Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Université de Paris, Paris, France.
CEA Paris-Saclay, Joliot Institute, NeuroSpin, BAOBAB, Centre d'études de Saclay, Gif-sur-Yvette, France.
Schizophr Bull. 2024 Mar 7;50(2):363-373. doi: 10.1093/schbul/sbad080.
The emergence of psychosis in ultra-high-risk subjects (UHR) is influenced by gene-environment interactions that rely on epigenetic mechanisms such as microRNAs. However, whether they can be relevant pathophysiological biomarkers of psychosis' onset remains unknown.
We present a longitudinal study of microRNA expression, measured in plasma by high-throughput sequencing at baseline and follow-up, in a prospective cohort of 81 UHR, 35 of whom developed psychosis at follow-up (converters). We combined supervised machine learning and differential graph analysis to assess the relative weighted contribution of each microRNA variation to the difference in outcome and identify outcome-specific networks. We then applied univariate models to the resulting microRNA variations common to both strategies, to interpret them as a function of demographic and clinical covariates.
We identified 207 microRNA variations that significantly contributed to the classification. The differential network analysis found 276 network-specific correlations of microRNA variations. The combination of both strategies identified 25 microRNAs, whose gene targets were overrepresented in cognition and schizophrenia genome-wide association studies findings. Interpretable univariate models further supported the relevance of miR-150-5p and miR-3191-5p variations in psychosis onset, independent of age, sex, cannabis use, and medication.
In this first longitudinal study of microRNA variation during conversion to psychosis, we combined 2 methodologically independent data-driven strategies to identify a dynamic epigenetic signature of the emergence of psychosis that is pathophysiologically relevant.
精神病高危人群(UHR)出现精神病与基因-环境相互作用有关,这种相互作用依赖于表观遗传机制,如 microRNAs。然而,它们是否可以作为精神病发病的相关病理生理生物标志物尚不清楚。
我们进行了一项前瞻性队列研究,该研究对 81 名 UHR 患者进行了基线和随访时的血浆 microRNA 表达的高通量测序,其中 35 名患者在随访时发展为精神病(转化者)。我们结合有监督的机器学习和差异图分析,评估每个 microRNA 变化对结果差异的相对加权贡献,并确定与结果相关的网络。然后,我们将这两种策略都得到的 microRNA 变化应用于单变量模型,以解释它们作为人口统计学和临床协变量的函数。
我们确定了 207 个 microRNA 变化,这些变化对分类有显著贡献。差异网络分析发现了 276 个 microRNA 变化的网络特异性相关性。这两种策略的结合确定了 25 个 microRNAs,它们的基因靶标在认知和精神分裂症全基因组关联研究结果中被过度代表。可解释的单变量模型进一步支持了 miR-150-5p 和 miR-3191-5p 变化在精神病发病中的相关性,独立于年龄、性别、大麻使用和药物治疗。
在这项精神病转化过程中 microRNA 变异的首次纵向研究中,我们结合了 2 种方法上独立的数据驱动策略,确定了精神病出现的动态表观遗传特征,具有病理生理相关性。