Montillo Albert, Metaxas Dimitris, Axel Leon
GE Global Research Center, Niskayuna, NY, USA.
Department of Computer Science, Rutgers University, Piscataway, NJ, USA.
Comput Biomech Med Soft Tiss Musculoskelet Syst. 2011;2011:143-155. doi: 10.1007/978-1-4419-9619-0. Epub 2011 May 4.
Most automated methods for cardiac segmentation are not directly applicable to tagged MRI (tMRI) because they do not handle all of the analysis challenges: tags obscure heart boundaries, low contrast, image artifacts, and radial image planes. Other methods do not process all acquired tMRI data or do not ensure tissue incompressibility. In this chapter, we present a cardiac segmentation method for tMRI which requires no user input, suppresses image artifacts, extracts heart features using 3D grayscale morphology, and constructs a biventricular model from the data that ensures the near incompressibility of heart tissue. We project landmarks of 3D features along curves in the solution to a PDE, and embed biomechanical constraints using the finite element method. Testing on normal and diseased subjects yields an RMS segmentation accuracy of ~2 mm, comparing favorably with manual segmentation, interexpert variability and segmentation methods for nontagged cine MRI.
大多数用于心脏分割的自动化方法并不直接适用于标记磁共振成像(tMRI),因为它们无法应对所有分析挑战:标记会模糊心脏边界、对比度低、存在图像伪影以及径向图像平面。其他方法无法处理所有采集到的tMRI数据,或者无法确保组织不可压缩性。在本章中,我们提出了一种用于tMRI的心脏分割方法,该方法无需用户输入,可抑制图像伪影,使用三维灰度形态学提取心脏特征,并根据确保心脏组织近乎不可压缩性的数据构建双心室模型。我们将三维特征的地标沿偏微分方程解中的曲线投影,并使用有限元方法嵌入生物力学约束。在正常和患病受试者身上进行测试,得出的分割均方根误差精度约为2毫米,与手动分割、专家间变异性以及非标记电影磁共振成像的分割方法相比具有优势。