Suppr超能文献

基于4D标记磁共振成像的不可压缩双心室模型构建与心脏分割

Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI.

作者信息

Montillo Albert, Metaxas Dimitris, Axel Leon

机构信息

GE Global Research Center, Niskayuna, NY, USA.

Department of Computer Science, Rutgers University, Piscataway, NJ, USA.

出版信息

Comput Biomech Med Soft Tiss Musculoskelet Syst. 2011;2011:143-155. doi: 10.1007/978-1-4419-9619-0. Epub 2011 May 4.

Abstract

Most automated methods for cardiac segmentation are not directly applicable to tagged MRI (tMRI) because they do not handle all of the analysis challenges: tags obscure heart boundaries, low contrast, image artifacts, and radial image planes. Other methods do not process all acquired tMRI data or do not ensure tissue incompressibility. In this chapter, we present a cardiac segmentation method for tMRI which requires no user input, suppresses image artifacts, extracts heart features using 3D grayscale morphology, and constructs a biventricular model from the data that ensures the near incompressibility of heart tissue. We project landmarks of 3D features along curves in the solution to a PDE, and embed biomechanical constraints using the finite element method. Testing on normal and diseased subjects yields an RMS segmentation accuracy of ~2 mm, comparing favorably with manual segmentation, interexpert variability and segmentation methods for nontagged cine MRI.

摘要

大多数用于心脏分割的自动化方法并不直接适用于标记磁共振成像(tMRI),因为它们无法应对所有分析挑战:标记会模糊心脏边界、对比度低、存在图像伪影以及径向图像平面。其他方法无法处理所有采集到的tMRI数据,或者无法确保组织不可压缩性。在本章中,我们提出了一种用于tMRI的心脏分割方法,该方法无需用户输入,可抑制图像伪影,使用三维灰度形态学提取心脏特征,并根据确保心脏组织近乎不可压缩性的数据构建双心室模型。我们将三维特征的地标沿偏微分方程解中的曲线投影,并使用有限元方法嵌入生物力学约束。在正常和患病受试者身上进行测试,得出的分割均方根误差精度约为2毫米,与手动分割、专家间变异性以及非标记电影磁共振成像的分割方法相比具有优势。

相似文献

1
Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI.
Comput Biomech Med Soft Tiss Musculoskelet Syst. 2011;2011:143-155. doi: 10.1007/978-1-4419-9619-0. Epub 2011 May 4.
2
Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model.
Med Image Anal. 2008 Feb;12(1):69-85. doi: 10.1016/j.media.2007.10.009. Epub 2007 Dec 14.
3
A graph theoretic approach for computing 3D+time biventricular cardiac strain from tagged MRI data.
Med Image Anal. 2017 Jan;35:46-57. doi: 10.1016/j.media.2016.06.006. Epub 2016 Jun 11.
4
Tag removal in cardiac tagged MRI images using coupled dictionary learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7921-4. doi: 10.1109/EMBC.2015.7320229.
6
Left ventricular deformation recovery from cine MRI using an incompressible model.
IEEE Trans Med Imaging. 2007 Sep;26(9):1136-53. doi: 10.1109/TMI.2007.903693.
7
Evaluation of cardiac biventricular segmentation from multiaxis MRI data: a multicenter study.
J Magn Reson Imaging. 2008 Sep;28(3):626-36. doi: 10.1002/jmri.21520.
9
Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.
Comput Med Imaging Graph. 2015 Jul;43:1-14. doi: 10.1016/j.compmedimag.2015.01.006. Epub 2015 Jan 28.
10
Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.
Magn Reson Med. 2018 May;79(5):2665-2675. doi: 10.1002/mrm.26923. Epub 2017 Oct 2.

本文引用的文献

1
Automated Model-Based Segmentation of the Left and Right Ventricles in Tagged Cardiac MRI.
Med Image Comput Comput Assist Interv. 2003;2878:507-515. doi: 10.1007/978-3-540-39899-8_63.
2
Biomechanically-constrained 4D estimation of myocardial motion.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):257-65. doi: 10.1007/978-3-642-04271-3_32.
3
Automatic model-based segmentation of the heart in CT images.
IEEE Trans Med Imaging. 2008 Sep;27(9):1189-201. doi: 10.1109/TMI.2008.918330.
4
Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model.
Med Image Anal. 2008 Feb;12(1):69-85. doi: 10.1016/j.media.2007.10.009. Epub 2007 Dec 14.
5
Tag and contour detection in tagged MR images of the left ventricle.
IEEE Trans Med Imaging. 1994;13(1):74-88. doi: 10.1109/42.276146.
6
Nonrigid image registration with subdivision lattices: application to cardiac MR image analysis.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):335-42. doi: 10.1007/978-3-540-75757-3_41.
7
Adaptive metamorphs model for 3D medical image segmentation.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):302-10. doi: 10.1007/978-3-540-75757-3_37.
8
Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):44-51. doi: 10.1007/978-3-540-75757-3_6.
9
Boosting and nonparametric based tracking of tagged MRI cardiac boundaries.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):636-44. doi: 10.1007/11866565_78.
10
In vivo strain and stress estimation of the heart left and right ventricles from MRI images.
Med Image Anal. 2003 Dec;7(4):435-44. doi: 10.1016/s1361-8415(03)00032-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验