Montillo Albert, Metaxas Dimitris, Axel Leon
University of Pennsylvania, Phila., PA 19104, USA.
Rutgers University, New Brunswick, NJ 08854 USA.
Med Image Comput Comput Assist Interv. 2003;2878:507-515. doi: 10.1007/978-3-540-39899-8_63.
We describe an automated, model-based method to segment the left and right ventricles in 4D tagged MR. We fit 3D epicardial and endocardial surface models to ventricle features we extract from the image data. Excellent segmentation is achieved using novel methods that (1) initialize the models and (2) that compute 3D model forces from 2D tagged MR images. The 3D forces guide the models to patient-specific anatomy while the fit is regularized via internal deformation strain energy of a thin plate. Deformation continues until the forces equilibrate or vanish. Validation of the segmentations is performed quantitatively and qualitatively on normal and diseased subjects.
我们描述了一种基于模型的自动化方法,用于在四维标记磁共振成像中分割左心室和右心室。我们将三维心外膜和心内膜表面模型拟合到从图像数据中提取的心室特征上。使用新颖的方法可实现出色的分割,这些方法包括:(1)初始化模型;(2)从二维标记磁共振图像计算三维模型力。三维力将模型引导至患者特定的解剖结构,同时通过薄板的内部变形应变能对拟合进行正则化。变形持续进行,直到力达到平衡或消失。我们对正常和患病受试者的分割结果进行了定量和定性验证。