Salpekar Devashish, Dong Changxin, Oliveira Eliezer F, Khabashesku Valery N, Gao Guanhui, Ojha Ved, Vajtai Robert, Galvao Douglas S, Babu Ganguli, Ajayan Pulickel M
Department of Material Science and NanoEngineering, Rice University, Houston, TX 77005, USA.
Group of Organic Solids and New Materials, Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil.
Materials (Basel). 2023 Feb 22;16(5):1804. doi: 10.3390/ma16051804.
Li-S batteries still suffer from two of the major challenges: polysulfide shuttle and low inherent conductivity of sulfur. Here, we report a facile way to develop a bifunctional separator coated with fluorinated multiwalled carbon nanotubes. Mild fluorination does not affect the inherent graphitic structure of carbon nanotubes as shown by transmission electron microscopy. Fluorinated carbon nanotubes show an improved capacity retention by trapping/repelling lithium polysulfides at the cathode, while simultaneously acting as the "second current collector". Moreover, reduced charge-transfer resistance and enhanced electrochemical performance at the cathode-separator interface result in a high gravimetric capacity of around 670 mAh g at 4C. Unique chemical interactions between fluorine and carbon at the separator and the polysulfides, studied using DFT calculations, establish a new direction of utilizing highly electronegative fluorine moieties and absorption-based porous carbons for mitigation of polysulfide shuttle in Li-S batteries.
多硫化物穿梭效应和硫的固有低电导率。在此,我们报告了一种简便的方法来制备涂覆有氟化多壁碳纳米管的双功能隔膜。如透射电子显微镜所示,温和氟化不会影响碳纳米管的固有石墨结构。氟化碳纳米管通过在阴极捕获/排斥多硫化锂显示出改善的容量保持率,同时充当“第二集流体”。此外,阴极-隔膜界面处电荷转移电阻的降低和电化学性能的增强导致在4C时具有约670 mAh g的高重量容量。使用密度泛函理论计算研究了隔膜上氟与碳以及多硫化物之间独特的化学相互作用,为利用高电负性氟基团和基于吸附的多孔碳来减轻锂硫电池中的多硫化物穿梭效应确立了新方向。