Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
Prog Biophys Mol Biol. 2020 May;152:64-73. doi: 10.1016/j.pbiomolbio.2019.11.006. Epub 2019 Nov 16.
The causative agent of Tuberculosis (TB) Mycobacterium tuberculosis (Mtb) encounters unfavourable environmental conditions in the lungs, including nutrient limitation, low oxygen tensions and/or low/high pH values. These harsh conditions in the host triggers Mtb to enter a dormant state in which the pathogen does not replicate and uses host-derived fatty acids instead of carbohydrates as an energy source. Independent to the energy source, the bacterium's energy currency ATP is generated by oxidative phosphorylation, in which the FF-ATP synthase uses the proton motive force generated by the electron transport chain. This catalyst is essential in Mtb and inhibition by the diarylquinoline class of drugs like Bedaquilline, TBAJ-587, TBAJ-876 or squaramides demonstrated that this engine is an attractive target in TB drug discovery. A special feature of the mycobacterial F-ATP synthase is its inability to establish a significant proton gradient during ATP hydrolysis, and its latent ATPase activity, to prevent energy waste and to control the membrane potential. Recently, unique epitopes of mycobacterial FF-ATP synthase subunits absent in their prokaryotic or mitochondrial counterparts have been identified to contribute to the regulation of the low ATPase activity. Most recent structural insights into individual subunits, the F domain or the entire mycobacterial enzyme added to the understanding of mechanisms, regulation and differences of the mycobacterial FF-ATP synthase compared to other bacterial and eukaryotic engines. These novel insights provide the basis for the design of new compounds targeting this engine and even novel regimens for multidrug resistant TB.
结核分枝杆菌(Mtb)是结核病(TB)的病原体,它在肺部会遇到不利的环境条件,包括营养限制、低氧张力和/或低/高 pH 值。宿主中的这些恶劣条件会促使 Mtb 进入休眠状态,在此状态下,病原体不会复制,而是利用宿主衍生的脂肪酸而不是碳水化合物作为能量来源。与能量来源无关,细菌的能量货币 ATP 是通过氧化磷酸化产生的,其中 FF-ATP 合酶利用电子传递链产生的质子动力。这种催化剂在 Mtb 中是必不可少的,二芳基喹啉类药物(如贝达喹啉、TBAJ-587、TBAJ-876 或 squaramides)的抑制作用表明,该酶是结核病药物发现中的一个有吸引力的靶标。分枝杆菌 F-ATP 合酶的一个特殊特征是,它在 ATP 水解过程中无法建立显著的质子梯度,并且其潜在的 ATP 酶活性可防止能量浪费并控制膜电位。最近,已经鉴定出分枝杆菌 FF-ATP 合酶亚基中不存在于原核或线粒体对应物中的独特表位,这些表位有助于调节低 ATP 酶活性。最近对单个亚基、F 结构域或整个分枝杆菌酶的结构见解增加了对分枝杆菌 FF-ATP 合酶与其他细菌和真核发动机的机制、调节和差异的理解。这些新的见解为设计针对该发动机的新型化合物甚至多药耐药结核病的新方案提供了基础。