Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.
Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee.
Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C163-C173. doi: 10.1152/ajpcell.00107.2019. Epub 2019 Nov 20.
Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.
光漂白后荧光恢复(FRAP)在描绘肌球蛋白生物学方面非常有用,荧光团化学的创新扩展了用于显微镜检测的荧光团的种类。但是,FRAP 中的一个假设是在激光激发后荧光蛋白的不可逆光漂白。在这里,我们证明了光可转化的荧光蛋白 mEos3.2 的可逆光漂白。我们使用 CRISPR/Cas9 基因组编辑在人诱导多能干细胞(hiPSC)中将 mEos3.2 敲入到 titin 的 COOH 末端,以可视化肌节 titin 的掺入和周转。在心脏诱导后,肌球蛋白 titin-mEos3.2 融合蛋白在 hiPSC 衍生的心肌细胞(CM)的肌节中表达和整合。STORM 成像显示 M 带聚集的结合 titin-mEos3.2 的区域,很少有可溶性 titin-mEos3.2 分子。FRAP 显示 titin-mEos3.2 的基线荧光恢复为 68%,半衰期约为 1.2 小时,表明肌节 titin 与可溶性 titin 快速交换。然而,多聚甲醛固定和透化的 titin-mEos3.2 hiPSC-CMs 出人意料地显示出 55%的荧光恢复。多聚甲醛固定、环己酰亚胺处理和未经处理的 titin-mEos3.2 hiPSC-CMs 的全细胞 FRAP 分析显示,荧光恢复没有显著差异。表达细胞质 mEos3.2 的固定 HEK 293T 的 FRAP 显示出 58%的荧光恢复。这些数据表明,在 FRAP 后 titin-mEos3.2 经历了可逆的光漂白。使用小鼠 titin-eGFP 模型,我们证明没有发生可逆的光漂白。我们的结果表明,在 titin-mEos3.2 hiPSC-CM 模型中,titin 的大部分恢复归因于可逆的光漂白,并且在长期细胞成像中从特定荧光蛋白推断可靠的 FRAP 数据时,应引起警惕。