Suppr超能文献

ISC 基因簇表达乙醇耐受力相关的改善其乙醇生产通过有机酸通量重定向在产乙醇大肠杆菌 KO11 株。

The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain.

机构信息

Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.

出版信息

World J Microbiol Biotechnol. 2019 Nov 20;35(12):189. doi: 10.1007/s11274-019-2769-8.

Abstract

Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD 2.16% to LD 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.

摘要

化石燃料的消耗会影响温室气体的排放。生物燃料被认为是减少对化石燃料依赖的替代可再生能源。通过重组微生物生产的生物乙醇是一种广泛提出的替代方法,可以提高发酵过程中的产量。然而,乙醇和乙酸的积累在发酵过程中被描述为微生物代谢能力的重要胁迫因素,会停止发酵过程并影响乙醇的产量。乙醇耐受性是改善微生物发酵特性的决定因素;然而,对乙醇耐受性的理解是有限的。已经对工程化的大肠杆菌 KO11 菌株进行了详细研究,并将其用作产乙醇细菌模型。该菌株能够利用葡萄糖和木糖高效生产乙醇。在当前的工作中,评估了铁硫簇 (ISC) 在 KO11 菌株中的过度表达对其耐受性和乙醇产量的影响。在添加乙醇时,大肠杆菌 KO11 的膜磷脂脂肪酸谱发生了改变,但不是由于 hscA 突变引起的。当在 2%乙醇中生长时,hscA 突变使 Kmp 菌株的乙醇耐受性降低,与 KO11 亲本菌株相比。在突变株 Kmp 中补充来自 LD 2.16%至 LD 3.8%乙醇的重组 isc 基因簇 (pJC10 质粒),可提高乙醇耐受性。在使用葡萄糖(120 g/L)的矿物培养基的 1 L 生物反应器中进行分批发酵时,KO11 菌株的乙醇生产效率约为 76.9%,而 hscA 突变株(Kmp)约为 75.4%,转化株 Kmp(pJC10)约为 92.4%。与 KO11(17.05 g/L)和 Kmp(16.62 g/L)相比,工程化的 Kmp(pJC10)菌株中乙醇量的增加与发酵培养基中(2.3 g/L)有机酸(如乙酸和乳酸)产量的减少有关。在转化的 Kmp(pJC10) 菌株中,醇脱氢酶 (ADH) 活性增加了约 350%,而在 Kmp 突变体中,磷酸甘油酸激酶 (PGK)、丙酮酸激酶 (PYK) 和 ADH 活性降低,与 KO11 相比。结果表明,在产乙醇的大肠杆菌 KO11 菌株中过度表达 isc 系统,主要通过提高乙醇耐受性和 ADH 活性以及将代谢通量从乙酸合成转向乙醇来提高乙醇产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验