Suppr超能文献

基于速度测量误差的加权最小二乘法的4D流动磁共振成像压力估计

4D Flow MRI Pressure Estimation Using Velocity Measurement-Error-Based Weighted Least-Squares.

作者信息

Zhang Jiacheng, Brindise Melissa C, Rothenberger Sean, Schnell Susanne, Markl Michael, Saloner David, Rayz Vitaliy L, Vlachos Pavlos P

出版信息

IEEE Trans Med Imaging. 2020 May;39(5):1668-1680. doi: 10.1109/TMI.2019.2954697. Epub 2019 Nov 21.

Abstract

This work introduces a 4D flow magnetic resonance imaging (MRI) pressure reconstruction method which employs weighted least-squares (WLS) for pressure integration. Pressure gradients are calculated from the velocity fields, and velocity errors are estimated from the velocity divergence for incompressible flow. Pressure gradient errors are estimated by propagating the velocity errors through Navier-Stokes momentum equation. A weight matrix is generated based on the pressure gradient errors, then employed for pressure reconstruction. The pressure reconstruction method was demonstrated and analyzed using synthetic velocity fields as well as Poiseuille flow measured using in vitro 4D flow MRI. Performance of the proposed WLS method was compared to the method of solving the pressure Poisson equation which has been the primary method used in the previous studies. Error analysis indicated that the proposed method is more robust to velocity measurement errors. Improvement on pressure results was found to be more significant for the cases with spatially-varying velocity error level, with reductions in error ranging from 50% to over 200%. Finally, the method was applied to flow in patient-specific cerebral aneurysms. Validation was performed with in vitro flow data collected using Particle Tracking Velocimetry (PTV) and in vivo flow measurement obtained using 4D flow MRI. Pressure calculated by WLS, as opposed to the Poisson equation, was more consistent with the flow structures and showed better agreement between the in vivo and in vitro data. These results suggest the utility of WLS method to obtain reliable pressure field from clinical flow measurement data.

摘要

这项工作介绍了一种四维流动磁共振成像(MRI)压力重建方法,该方法采用加权最小二乘法(WLS)进行压力积分。从速度场计算压力梯度,并根据不可压缩流的速度散度估计速度误差。通过将速度误差代入纳维-斯托克斯动量方程来估计压力梯度误差。基于压力梯度误差生成权重矩阵,然后用于压力重建。使用合成速度场以及体外四维流动MRI测量的泊肃叶流对压力重建方法进行了演示和分析。将所提出的WLS方法的性能与求解压力泊松方程的方法进行了比较,后者是先前研究中使用的主要方法。误差分析表明,所提出的方法对速度测量误差更具鲁棒性。对于速度误差水平随空间变化的情况,压力结果的改善更为显著,误差降低范围从50%到超过200%。最后,该方法应用于患者特异性脑动脉瘤的血流。使用粒子跟踪测速法(PTV)收集的体外血流数据和使用四维流动MRI获得的体内血流测量结果进行了验证。与泊松方程相比,通过WLS计算的压力与流动结构更一致,并且在体内和体外数据之间显示出更好的一致性。这些结果表明WLS方法可用于从临床血流测量数据中获得可靠的压力场。

相似文献

1
4D Flow MRI Pressure Estimation Using Velocity Measurement-Error-Based Weighted Least-Squares.
IEEE Trans Med Imaging. 2020 May;39(5):1668-1680. doi: 10.1109/TMI.2019.2954697. Epub 2019 Nov 21.
2
Divergence-Free Constrained Phase Unwrapping and Denoising for 4D Flow MRI Using Weighted Least-Squares.
IEEE Trans Med Imaging. 2021 Dec;40(12):3389-3399. doi: 10.1109/TMI.2021.3086331. Epub 2021 Nov 30.
3
A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation.
J R Soc Interface. 2022 Jan;19(186):20210751. doi: 10.1098/rsif.2021.0751. Epub 2022 Jan 19.
5
Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations.
J Biomech. 2019 Sep 20;94:13-21. doi: 10.1016/j.jbiomech.2019.07.004. Epub 2019 Jul 9.
6
In Vitro Validation of 4D Flow MRI for Local Pulse Wave Velocity Estimation.
Cardiovasc Eng Technol. 2018 Dec;9(4):674-687. doi: 10.1007/s13239-018-00377-z. Epub 2018 Sep 14.
7
Modeling Bias Error in 4D Flow MRI Velocity Measurements.
IEEE Trans Med Imaging. 2022 Jul;41(7):1802-1812. doi: 10.1109/TMI.2022.3149421. Epub 2022 Jun 30.
8
Visualizing and quantifying flow stasis in abdominal aortic aneurysms in men using 4D flow MRI.
Magn Reson Imaging. 2019 Apr;57:103-110. doi: 10.1016/j.mri.2018.11.003. Epub 2018 Nov 13.
9
Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.
Magn Reson Med. 2018 Apr;79(4):1962-1971. doi: 10.1002/mrm.26853. Epub 2017 Jul 26.
10
On the use of optical flow methods with spin-tagging magnetic resonance imaging.
Ann Biomed Eng. 2001 Jan;29(1):9-17. doi: 10.1114/1.1332082.

引用本文的文献

1
Fetal and neonatal echocardiographic analysis of biomechanical alterations for the systemic right ventricle heart.
PLoS One. 2024 Sep 19;19(9):e0308645. doi: 10.1371/journal.pone.0308645. eCollection 2024.
2
Super-Resolving and Denoising 4D flow MRI of Neurofluids Using Physics-Guided Neural Networks.
Ann Biomed Eng. 2025 Feb;53(2):331-347. doi: 10.1007/s10439-024-03606-w. Epub 2024 Sep 2.
3
Left ventricle diastolic vortex ring characterization in ischemic cardiomyopathy: insight into atrio-ventricular interplay.
Med Biol Eng Comput. 2024 Dec;62(12):3671-3685. doi: 10.1007/s11517-024-03154-4. Epub 2024 Jul 1.
4
Enhanced echocardiographic assessment of intracardiac flow in congenital heart disease.
PLoS One. 2024 Mar 18;19(3):e0300709. doi: 10.1371/journal.pone.0300709. eCollection 2024.
5
Cardiac MR modelling of systolic and diastolic blood pressure.
Open Heart. 2023 Dec 18;10(2):e002484. doi: 10.1136/openhrt-2023-002484.
6
A Vector Fitting Approach for the Automated Estimation of Lumped Boundary Conditions of 1D Circulation Models.
Cardiovasc Eng Technol. 2023 Aug;14(4):505-525. doi: 10.1007/s13239-023-00669-z. Epub 2023 Jun 12.
7
Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity.
IEEE Trans Med Imaging. 2023 Aug;42(8):2360-2373. doi: 10.1109/TMI.2023.3251734. Epub 2023 Aug 1.
8
Wall Shear Stress Estimation for 4D Flow MRI Using Navier-Stokes Equation Correction.
Ann Biomed Eng. 2022 Dec;50(12):1810-1825. doi: 10.1007/s10439-022-02993-2. Epub 2022 Aug 9.
9
10
Modeling Bias Error in 4D Flow MRI Velocity Measurements.
IEEE Trans Med Imaging. 2022 Jul;41(7):1802-1812. doi: 10.1109/TMI.2022.3149421. Epub 2022 Jun 30.

本文引用的文献

1
Density and Viscosity Matched Newtonian and non-Newtonian Blood-Analog Solutions with PDMS Refractive Index.
Exp Fluids. 2018 Nov;59(11). doi: 10.1007/s00348-018-2629-6. Epub 2018 Oct 30.
2
Multi-modality cerebral aneurysm haemodynamic analysis: 4D flow MRI, volumetric particle velocimetry and computational fluid dynamics.
J R Soc Interface. 2019 Sep 27;16(158):20190465. doi: 10.1098/rsif.2019.0465. Epub 2019 Sep 11.
3
Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-Phase Ib: Effect of morphology on hemodynamics.
PLoS One. 2019 May 17;14(5):e0216813. doi: 10.1371/journal.pone.0216813. eCollection 2019.
5
4D flow cardiovascular magnetic resonance consensus statement.
J Cardiovasc Magn Reson. 2015 Aug 10;17(1):72. doi: 10.1186/s12968-015-0174-5.
6
Cardiovascular magnetic resonance phase contrast imaging.
J Cardiovasc Magn Reson. 2015 Aug 9;17(1):71. doi: 10.1186/s12968-015-0172-7.
7
Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement.
Magn Reson Med. 2016 May;75(5):1909-19. doi: 10.1002/mrm.25715. Epub 2015 Jun 8.
8
Pressure mapping from flow imaging: enhancing computation of the viscous term through velocity reconstruction in near-wall regions.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5097-100. doi: 10.1109/EMBC.2014.6944771.
9
Calculating intraventricular pressure difference using a multi-beat spatiotemporal reconstruction of color m-mode echocardiography.
Ann Biomed Eng. 2014 Dec;42(12):2466-79. doi: 10.1007/s10439-014-1122-5. Epub 2014 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验