Suppr超能文献

基于均数差值速度的自动 4D Flow MRI 分割。

Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity.

出版信息

IEEE Trans Med Imaging. 2023 Aug;42(8):2360-2373. doi: 10.1109/TMI.2023.3251734. Epub 2023 Aug 1.

Abstract

We present a method to automatically segment 4D flow magnetic resonance imaging (MRI) by identifying net flow effects using the standardized difference of means (SDM) velocity. The SDM velocity quantifies the ratio between the net flow and observed flow pulsatility in each voxel. Vessel segmentation is performed using an F-test, identifying voxels with significantly higher SDM velocity values than background voxels. We compare the SDM segmentation algorithm against pseudo-complex difference (PCD) intensity segmentation of 4D flow measurements in in vitro cerebral aneurysm models and 10 in vitro Circle of Willis (CoW) datasets. We also compared the SDM algorithm to convolutional neural network (CNN) segmentation in 5 thoracic vasculature datasets. The in vitro flow phantom geometry is known, while the ground truth geometries for the CoW and thoracic aortas are derived from high-resolution time-of-flight (TOF) magnetic resonance angiography and manual segmentation, respectively. The SDM algorithm demonstrates greater robustness than PCD and CNN approaches and can be applied to 4D flow data from other vascular territories. The SDM to PCD comparison demonstrated an approximate 48% increase in sensitivity in vitro and 70% increase in the CoW, respectively; the SDM and CNN sensitivities were similar. The vessel surface derived from the SDM method was 46% closer to the in vitro surfaces and 72% closer to the in vitro TOF surfaces than the PCD approach. The SDM and CNN approaches both accurately identify vessel surfaces. The SDM algorithm is a repeatable segmentation method, enabling reliable computation of hemodynamic metrics associated with cardiovascular disease.

摘要

我们提出了一种通过使用标准化差值(SDM)速度来识别净流动效应来自动分割 4D 流磁共振成像(MRI)的方法。SDM 速度量化了每个体素中净流动与观察到的流动脉动之间的比率。使用 F 检验进行血管分割,识别出 SDM 速度值明显高于背景体素的体素。我们将 SDM 分割算法与体外脑动脉瘤模型和 10 个体外环 Willis(CoW)数据集的 4D 流测量的伪复数差(PCD)强度分割进行了比较。我们还将 SDM 算法与 5 个胸血管数据集的卷积神经网络(CNN)分割进行了比较。体外流幻影的几何形状是已知的,而 CoW 和胸主动脉的真实几何形状分别来自高分辨率时间飞跃(TOF)磁共振血管造影和手动分割。SDM 算法比 PCD 和 CNN 方法更具鲁棒性,可以应用于其他血管区域的 4D 流数据。SDM 与 PCD 的比较表明,体外的敏感性分别增加了约 48%,CoW 增加了 70%;SDM 和 CNN 的敏感性相似。SDM 方法得出的血管表面比 PCD 方法更接近体外表面,分别为 46%和 72%;SDM 和 CNN 方法都能准确地识别血管表面。SDM 算法是一种可重复的分割方法,能够可靠地计算与心血管疾病相关的血流动力学指标。

相似文献

1
Automatic 4D Flow MRI Segmentation Using the Standardized Difference of Means Velocity.基于均数差值速度的自动 4D Flow MRI 分割。
IEEE Trans Med Imaging. 2023 Aug;42(8):2360-2373. doi: 10.1109/TMI.2023.3251734. Epub 2023 Aug 1.
3
Automated multi-atlas segmentation of cardiac 4D flow MRI.心脏 4D 流 MRI 的自动多图谱分割。
Med Image Anal. 2018 Oct;49:128-140. doi: 10.1016/j.media.2018.08.003. Epub 2018 Aug 13.
4
Automated hemodynamic assessment for cranial 4D flow MRI.颅 4D 流 MRI 的自动血流动力学评估。
Magn Reson Imaging. 2023 Apr;97:46-55. doi: 10.1016/j.mri.2022.12.016. Epub 2022 Dec 26.
8
Deep learning-based velocity antialiasing of 4D-flow MRI.基于深度学习的 4D-flow MRI 速度去假频处理。
Magn Reson Med. 2022 Jul;88(1):449-463. doi: 10.1002/mrm.29205. Epub 2022 Apr 5.

本文引用的文献

3
Modeling Bias Error in 4D Flow MRI Velocity Measurements.四维流磁共振速度测量中的模型偏差误差建模。
IEEE Trans Med Imaging. 2022 Jul;41(7):1802-1812. doi: 10.1109/TMI.2022.3149421. Epub 2022 Jun 30.
9
Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers.健康志愿者 4D 流 MRI 主动脉分段的可重复性。
J Magn Reson Imaging. 2021 Apr;53(4):1268-1279. doi: 10.1002/jmri.27431. Epub 2020 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验