Suppr超能文献

优化渗透血脑屏障开放,以实现小鼠皮层药物递送的活体显微镜研究。

Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

J Control Release. 2020 Jan 10;317:312-321. doi: 10.1016/j.jconrel.2019.11.019. Epub 2019 Nov 18.

Abstract

Intra-arterial (IA) infusion of mannitol induces osmotic blood-brain barrier opening (OBBBO) and that method has been used for decades to improve drug delivery to the brain. However, high variability of outcomes prevented vast clinical adoption. Studies on dynamic multi-scale imaging of OBBBO as well as extravasation of IA injected therapeutic agents are essential to develop strategies assuring precision and reproducibility of drug delivery. Intravital microscopy is increasingly used to capture the dynamics of biological processes at the molecular level in convenient mouse models. However, until now OBBBO has been achieved safely in subcortical structures, which prevented direct insight into the process of extravasation through the skull window. Here, we used our previously developed real-time MRI to adjust the procedure to achieve robust cortical OBBBO. We found that catheter-mediated delivery to the cortex from the ipsilateral carotid artery can be improved by temporarily occluding the contralateral carotid artery. The reproducibility and safety of the method were validated by MRI and histology. This experimental platform was further exploited for studying with intravital microscopy the extravasation of 0.58 kDa rhodamine and 153 kDa anti-VEGF monoclonal antibody (bevacizumab) upon IA injection. Dynamic imaging during IA infusion captured the spatiotemporal dynamic of infiltration for each molecule into the brain parenchyma upon OBBBO. Small-sized rhodamine exhibited faster and higher penetration than the antibody. Histological analysis showed some uptake of the monoclonal antibody after IA delivery, and OBBBO significantly amplified the extent of its uptake. For quantitative assessment of cortical uptake, bevacizumab was radiolabeled with zirconium-89 and infused intraarterially. As expected, OBBBO potentiated brain accumulation, providing 33.90 ± 9.06% of injected dose per gram of brain tissue (%ID/g) in the cortex and 17.09 ± 7.22%ID/g in subcortical structures. In contrast IA infusion with an intact BBB resulted in 3.56 ± 1.06%ID/g and 3.57 ± 0.59%ID/g in the same brain regions, respectively. This study established reproducible cortical OBBBO in mice, which enabled multi-photon microscopy studies on OBBBO and drug targeting. This approach helped demonstrate in a dynamic fashion extravasation of fluorescently-tagged antibodies and their effective delivery into the brain across an osmotically opened BBB.

摘要

动脉内(IA)输注甘露醇可诱导渗透血脑屏障开放(OBBBO),这种方法已被使用了几十年,以提高药物向大脑的输送。然而,由于结果的高度可变性,该方法未能广泛应用于临床。研究 OBBBO 的动态多尺度成像以及 IA 注射治疗剂的渗出对于开发确保药物输送精确性和重现性的策略至关重要。活体显微镜越来越多地用于在方便的小鼠模型中捕获分子水平上的生物过程的动态。然而,直到现在,OBBBO 才在皮质下结构中安全实现,这阻止了直接观察通过颅骨窗的渗出过程。在这里,我们使用我们之前开发的实时 MRI 来调整程序,以实现稳健的皮质 OBBBO。我们发现,从对侧颈总动脉进行导管介导的皮质内给药可以通过暂时阻塞对侧颈总动脉来改善。通过 MRI 和组织学验证了该方法的重现性和安全性。该实验平台进一步用于研究活体显微镜下 IA 注射后 0.58 kDa 罗丹明和 153 kDa 抗血管内皮生长因子单克隆抗体(贝伐单抗)的渗出。IA 输注过程中的动态成像捕获了 OBBBO 后每个分子渗透到脑实质的时空动态。小分子量的罗丹明比抗体渗透更快、更高。组织学分析显示,IA 给药后,单克隆抗体被部分摄取,OBBBO 显著增加了其摄取量。为了对皮质摄取进行定量评估,将 89 锆标记的贝伐单抗经动脉内输注。正如预期的那样,OBBBO 增强了大脑的积累,使皮质组织中的脑内摄取量达到 33.90±9.06%的注入剂量/克(%ID/g),而在皮质下结构中的摄取量为 17.09±7.22%ID/g。相比之下,完整 BBB 的 IA 输注在相同的脑区分别产生 3.56±1.06%ID/g 和 3.57±0.59%ID/g。本研究在小鼠中建立了可重复的皮质 OBBBO,这使得对 OBBBO 和药物靶向的多光子显微镜研究成为可能。该方法有助于以动态方式展示荧光标记的抗体的渗出及其通过渗透的 BBB 有效递送到大脑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验