Suppr超能文献

基于参数最大似然估计的微扫视奈曼-皮尔逊检测法

The Neyman Pearson detection of microsaccades with maximum likelihood estimation of parameters.

作者信息

Zhu Hongzhi, Salcudean Septimiu, Rohling Robert

机构信息

School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

出版信息

J Vis. 2019 Nov 1;19(13):17. doi: 10.1167/19.13.17.

Abstract

Despite the fact that the velocity threshold method is widely applied, the detection of microsaccades continues to be a challenging problem, due to gaze-tracking inaccuracy and the transient nature of microsaccades. Important parameters associated with a saccadic event, e.g., saccade duration, amplitude, and maximum velocity, are sometimes imprecisely estimated, which may lead to biases in inferring the roles of microsaccades in perception and cognition. To overcome the biases and have a better detection algorithm for microsaccades, we propose a novel statistical model for the tracked gaze positions during eye fixations. In this model, we incorporate a parametrization that has been previously applied to model saccades, which allows us to veridically capture the velocity profile of saccadic eye movements. Based on our model, we derive the Neyman Pearson Detector (NPD) for saccadic events. Implemented in conjunction with the maximum likelihood estimation method, our NPD can detect a saccadic event and estimate all parameters simultaneously. Because of its adaptive nature and its statistical optimality, our NPD method was able to better detect microsaccades in some datasets when compared with a recently proposed state-of-the-art method based on convolutional neural networks. NPD also yielded comparable performance with a recently developed Bayesian algorithm, with the added benefit of modeling a more biologically veridical velocity profile of the saccade. As opposed to these algorithms, NPD can lend itself better to online saccade detection, and thus has potential for human-computer interaction applications. Our algorithm is publicly available at https://github.com/hz-zhu/NPD-micro-saccade-detection.

摘要

尽管速度阈值法被广泛应用,但由于注视跟踪的不准确以及微扫视的瞬态特性,微扫视的检测仍然是一个具有挑战性的问题。与扫视事件相关的重要参数,例如扫视持续时间、幅度和最大速度,有时估计不准确,这可能导致在推断微扫视在感知和认知中的作用时产生偏差。为了克服这些偏差并拥有更好的微扫视检测算法,我们针对注视期间跟踪的注视位置提出了一种新颖的统计模型。在这个模型中,我们纳入了一种先前应用于扫视建模的参数化方法,这使我们能够准确地捕捉扫视眼动的速度轮廓。基于我们的模型,我们推导出了用于扫视事件的奈曼 - 皮尔逊检测器(NPD)。与最大似然估计方法结合实现时,我们的NPD可以检测扫视事件并同时估计所有参数。由于其自适应性质和统计最优性,与最近提出的基于卷积神经网络的先进方法相比,我们的NPD方法在一些数据集中能够更好地检测微扫视。NPD与最近开发的贝叶斯算法也具有相当的性能,并且具有对扫视的更符合生物学实际的速度轮廓进行建模的额外优势。与这些算法不同,NPD更适合在线扫视检测,因此在人机交互应用中具有潜力。我们的算法可在https://github.com/hz-zhu/NPD-micro-saccade-detection上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验