Mihali Andra, van Opheusden Bas, Ma Wei Ji
Center for Neural Science, New York University, New York, NY,
Center for Neural Science, New York University, New York, NY, USADepartment of Psychology, New York University, New York, NY,
J Vis. 2017 Jan 1;17(1):13. doi: 10.1167/17.1.13.
Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the "true" microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise-although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the "true" microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package.
微扫视是高速的注视性眼动,在感知和认知中具有特殊作用。默认的微扫视检测方法是确定平滑后的眼动速度何时超过阈值。我们开发了一种新方法,即贝叶斯微扫视检测(BMD),它基于眼位的简单统计模型进行推理。在这个模型中,一个隐藏状态变量在随机时间在漂移和微扫视状态之间变化。眼位是一种有偏随机游走,每个状态具有不同的速度分布。BMD根据给定的眼位时间序列从眼状态时间序列的后验概率分布中生成样本。应用于模拟数据时,与其他算法相比,BMD以更少的错误恢复了“真实”的微扫视,尤其是在高噪声情况下。应用于EyeLink眼动仪数据时,BMD检测到了默认方法检测到的几乎所有微扫视,还检测到了嵌入高噪声中的明显微扫视——尽管这些也可以解释为误报。接下来,我们将这些算法应用于用双浦肯野图像眼动仪收集的数据,其更高的精度证明将推断出的微扫视定义为地面真值是合理的。当我们添加人工测量噪声时,所有算法的推断都会退化;然而,在与EyeLink数据相当的噪声水平下,BMD恢复“真实”微扫视时的错误比默认算法少54%。虽然BMD不适合在线检测,但它有其他优点:它返回概率而不是二元判断,并且随着生成模型的完善,它可以直接进行调整。我们将我们的算法作为一个软件包提供。