Higareda América, Kumar-Krishnan Siva, García-Ruiz Amado F, Maya-Cornejo José, Lopez-Miranda José L, Bahena Daniel, Rosas Gerardo, Pérez Ramiro, Esparza Rodrigo
Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico.
Cátedras CONACYT_Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla 72570, Mexico.
Nanomaterials (Basel). 2019 Nov 19;9(11):1644. doi: 10.3390/nano9111644.
Bimetallic Au@Pt nanoparticles (NPs) with Pt monolayer shell are of much interest for applications in heterogeneous catalysts because of enhanced catalytic activity and very low Pt-utilization. However, precisely controlled synthesis with uniform Pt-monolayers and stability on the AuNPs seeds remain elusive. Herein, we report the controlled deposition of Pt-monolayer onto uniform AuNPs seeds to obtain Au@Pt core-shell NPs and their Pt-coverage dependent electrocatalytic activity for methanol electro-oxidation. The atomic ratio between Au/Pt was effectively tuned by varying the precursor solution ratio in the reaction solution. The morphology and atomic structure of the Au@Pt NPs were analyzed by high-resolution scanning transmission electron microcopy (HR-STEM) and X-ray diffraction (XRD) techniques. The results demonstrated that the Au@Pt core-shell NPs with Pt-shell thickness (atomic ratio 1:2) exhibit higher electrocatalytic activity for methanol electro-oxidation reaction, whereas higher and lower Pt ratios showed less overall catalytic performance. Such higher catalytic performance of Au@Pt NPs (1:2) can be attributed to the weakened CO binding on the Pt/monolayers surface. Our present synthesis strategy and optimization of the catalytic activity of Au@Pt core-shell NPs catalysts provide promising approach to rationally design highly active catalysts with less Pt-usage for high performance electrocatalysts for applications in fuel cells.
具有铂单分子层壳的双金属金@铂纳米颗粒(NPs)因其增强的催化活性和极低的铂利用率而在多相催化剂应用中备受关注。然而,精确控制合成具有均匀铂单分子层且在金纳米颗粒种子上保持稳定性仍然难以实现。在此,我们报道了在均匀的金纳米颗粒种子上可控沉积铂单分子层,以获得金@铂核壳纳米颗粒及其对甲醇电氧化的铂覆盖率依赖性电催化活性。通过改变反应溶液中前驱体溶液的比例,有效地调节了金/铂的原子比。利用高分辨率扫描透射电子显微镜(HR-STEM)和X射线衍射(XRD)技术分析了金@铂纳米颗粒的形态和原子结构。结果表明,铂壳厚度(原子比1:2)的金@铂核壳纳米颗粒对甲醇电氧化反应表现出更高的电催化活性,而更高和更低的铂比例显示出较低的整体催化性能。金@铂纳米颗粒(1:2)如此高的催化性能可归因于铂/单分子层表面上一氧化碳结合的减弱。我们目前的合成策略以及金@铂核壳纳米颗粒催化剂催化活性的优化,为合理设计具有较少铂用量的高活性催化剂以用于燃料电池应用中的高性能电催化剂提供了有前景的方法。