Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
BMC Infect Dis. 2019 Nov 21;19(1):979. doi: 10.1186/s12879-019-4606-y.
Fluoroquinolones are commonly recommended as treatment for urinary tract infections (UTIs). The development of resistance to these agents, particularly in gram-negative microorganisms complicates treatment of infections caused by these organisms. This study aimed to investigate antimicrobial resistance of different Enterobacteriaceae species isolated from hospital- acquired and community-acquired UTIs against fluoroquinolones and correlate its levels with the existing genetic mechanisms of resistance.
A total of 440 Enterobacteriaceae isolates recovered from UTIs were tested for antimicrobial susceptibility. Plasmid-mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance-determining regions (QRDRs) of gyrA and parC genes were examined in quinolone-resistant strains.
About (32.5%) of isolates were resistant to quinolones and (20.5%) were resistant to fluoroquinolones. All isolates with high and intermediate resistance phenotypes harbored one or more PMQR genes. QnrB was the most frequent gene (62.9%) of resistant isolates. Co-carriage of 2 PMQR genes was detected in isolates (46.9%) with high resistance to ciprofloxacin (CIP) (MICs > 128 μg/mL), while co-carriage of 3 PMQR genes was detected in (6.3%) of resistant isolates (MICs > 512 μg/mL). Carriage of one gene only was detected in intermediate resistance isolates (MICs of CIP = 1.5-2 μg/mL). Neither qnrA nor qnrC genes were detected. The mutation at code 83 of gyrA was the most frequent followed by Ser80-Ile in parC gene, while Asp-87 Asn mutation of gyrA gene was the least, where it was detected only in high resistant E. coli isolates (MIC ≥128 μg/mL). A double mutation in gyrA (Lys154Arg and Ser171Ala) was observed in high FQs resistant isolates (MIC of CIP < 128 μg/mL).
FQs resistance is caused by interact between PMQR genes and mutations in both gyrA and parC genes while a mutation in one gene only can explain quinolone resistance. Accumulation of PMQR genes and QRDR mutations confers high resistance to FQs.
氟喹诺酮类药物通常被推荐用于治疗尿路感染(UTIs)。这些药物的耐药性发展,特别是在革兰氏阴性微生物中,使这些生物体引起的感染的治疗变得复杂。本研究旨在调查医院获得性和社区获得性 UTIs 中不同肠杆菌科物种对氟喹诺酮类药物的抗菌耐药性,并将其与现有的耐药机制相关联。
对从 UTIs 中分离出的 440 株肠杆菌科分离株进行了抗菌药敏试验。在喹诺酮类耐药株中检测了质粒介导的喹诺酮耐药(PMQR)基因和gyrA 和 parC 基因喹诺酮耐药决定区(QRDR)中的突变。
约(32.5%)的分离株对喹诺酮类药物耐药,(20.5%)对氟喹诺酮类药物耐药。所有高和中度耐药表型的分离株均携带一种或多种 PMQR 基因。qnrB 是耐药分离株中最常见的基因(62.9%)。在对环丙沙星(CIP)(MICs > 128 μg/mL)具有高耐药性的分离株中,检测到 2 种 PMQR 基因的共携带(46.9%),而在耐药分离株(MICs > 512 μg/mL)中检测到 3 种 PMQR 基因的共携带(6.3%)。在中介耐药分离株中仅检测到携带一种基因(CIP 的 MICs = 1.5-2 μg/mL)。未检测到 qnrA 或 qnrC 基因。gyrA 基因 83 位密码子的突变最为常见,其次是 parC 基因中的 Ser80-Ile 突变,而 gyrA 基因的 Asp-87 Asn 突变最少,仅在高耐药性大肠埃希菌分离株中检测到(MIC ≥ 128 μg/mL)。在高 FQs 耐药分离株中观察到 gyrA 基因的双重突变(Lys154Arg 和 Ser171Ala)(CIP 的 MIC < 128 μg/mL)。
氟喹诺酮类药物的耐药性是由 PMQR 基因与 gyrA 和 parC 基因的突变相互作用引起的,而仅一个基因的突变就能解释喹诺酮类药物的耐药性。PMQR 基因和 QRDR 突变的积累赋予了对 FQs 的高度耐药性。