Suppr超能文献

使用程控三维(3D)纳米纤维收集器制备具有所需微观结构的静电纺纳米纤维。

Preparation of electrospun nanofibers with desired microstructures using a programmed three-dimensional (3D) nanofiber collector.

机构信息

Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.

Department of Mechanic Engineering, Wayne State University, Detroit, MI 48201, USA.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110188. doi: 10.1016/j.msec.2019.110188. Epub 2019 Sep 10.

Abstract

The traditional electrospinning process produces dense two-dimensional (2D) nanofiber (NF) sheets that limit cell infiltration and proliferation. Our previous study demonstrated that 3D NF sheets could be formed on an NF collector surface mounted with multiple movable needles through the corona discharge. In this study, we developed a programmed electrospun 3D NF collector. It can precisely control the moving speed of NF collector during electrospinning; thereby fabricating 3D NFs with desired microstructures (pore size, pore volume, and interconnectivity). Four types of polycaprolactone (PCL) 3D NF matrices with different microstructures can be obtained concurrently on the NF collector surface, which are set by different forward moving speed of the NF collector device: NF-zero (no move, as control), NF-low (0.085 mm/min), NF-mid (0.158 mm/min) and NF-high (0.232 mm/min). A linear increase of the NF sheet thickness (from 0.21 mm to 0.91 mm) was recorded with accelerating collector movement. Quantitative analysis using scanning electron microscopy (SEM), micro-computed tomography (μ-CT), and confocal laser scanning microscopy (CLSM) showed a monotonic increase of pore size and porosity with the increase of collector moving speeds. The collector movement also impacted the crystallinity and mechanical properties of the NFs. When prepared at high collector speed, the NFs showed improved proliferation and differentiation (p < .05) of pre-osteoblastic MC3T3 cells compared to the NFs from the static collector. A programmed NF collector device allows for the reproducible, precise and continuous fabrication of 3D NFs with tailorable geometry and microstructures. This simple, controllable, one-step process could promote the clinical translation of electrospun NFs in tissue engineering and regenerative medicine.

摘要

传统的静电纺丝工艺生产致密的二维(2D)纳米纤维(NF)片,限制了细胞的渗透和增殖。我们之前的研究表明,通过电晕放电,在安装有多根可移动针的 NF 收集器表面可以形成 3D NF 片。在这项研究中,我们开发了一种程控电纺 3D NF 收集器。它可以在静电纺丝过程中精确控制 NF 收集器的移动速度;从而制造出具有所需微观结构(孔径、孔体积和连通性)的 3D NF。可以在 NF 收集器表面上同时获得四种具有不同微观结构的聚己内酯(PCL)3D NF 基质,这是通过 NF 收集器设备的不同前进速度设定的:NF-零(不移动,作为对照)、NF-低(0.085mm/min)、NF-中(0.158mm/min)和 NF-高(0.232mm/min)。随着收集器运动的加速,记录到 NF 片厚度线性增加(从 0.21mm 增加到 0.91mm)。使用扫描电子显微镜(SEM)、微计算机断层扫描(μ-CT)和共聚焦激光扫描显微镜(CLSM)进行定量分析表明,孔径和孔隙率随收集器移动速度的增加而单调增加。收集器的运动也影响 NF 的结晶度和机械性能。当在高收集器速度下制备时,与来自静态收集器的 NF 相比,NF 显示出前成骨细胞 MC3T3 细胞增殖和分化的改善(p<0.05)。程控 NF 收集器装置允许可重复、精确和连续地制造具有可定制几何形状和微观结构的 3D NF。这种简单、可控、一步法可促进静电纺丝 NF 在组织工程和再生医学中的临床转化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验