State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Excellent Center for Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110221. doi: 10.1016/j.msec.2019.110221. Epub 2019 Oct 11.
The inflammatory response is the first and inevitable event after implant surgery in vivo, in which the macrophages M1 polarization is mediated. Numerous publications indicate that the physical properties of implant surface nanostructure can influence macrophages M1 polarization status, whereas the regulation mechanisms have not been elucidated yet. Unlike the conventional biochemical factors that can directly bind to the cellular surface receptors or be transported into cytoplasm, the physical information of implant surface nanostructure can only be sensed by direct contact with cells. Therefore, we infer that the implant surface nanostructure may have unique regulation mechanisms. In this study, we compared the influences of the titanium implant surface coated with titania nanotubes on the surface (∼100 nm diameter, NT-100) and the standard IFN-γ/LPS stimulation on the macrophages M1 polarization. Both the NT-100 surface and IFN-γ/LPS stimulation could induce macrophages M1 polarization, indicated by significant upregulation of M1-specific molecules including CD86, iNOS, CCR7 and IL-1β, without affecting the M2-specific molecules including CD206, Arg1 and IL-10. However, we found that the IFN-γ/LPS induced macrophages M1 polarization was mediated by RBP-J-IRF8 pathway, whereas the NT-100 surface was more related to FAK-MAPKs pathway, particularly the JNK and ERK1/2 signaling. Our study demonstrated that the implant surface nanostructure has great potential to trigger the host inflammatory response through distinct pathways from conventional biochemical factors, which may remind us to re-consider the unique regulation mechanisms of nano surface on cell functions. Our finding offers a theoretical basis for titanium implant modification to benefit tissue integration.
炎症反应是体内植入手术后的第一个也是不可避免的事件,其中巨噬细胞 M1 极化是由其介导的。大量文献表明,植入物表面纳米结构的物理特性可以影响巨噬细胞 M1 极化状态,但其调节机制尚未阐明。与可以直接与细胞表面受体结合或被转运到细胞质中的传统生化因素不同,植入物表面纳米结构的物理信息只能通过与细胞直接接触来感知。因此,我们推断植入物表面纳米结构可能具有独特的调节机制。在本研究中,我们比较了涂覆有二氧化钛纳米管的钛植入物表面(∼100nm 直径,NT-100)和标准 IFN-γ/LPS 刺激对巨噬细胞 M1 极化的影响。NT-100 表面和 IFN-γ/LPS 刺激都可以诱导巨噬细胞 M1 极化,这表现为 M1 特异性分子(包括 CD86、iNOS、CCR7 和 IL-1β)的显著上调,而不影响 M2 特异性分子(包括 CD206、Arg1 和 IL-10)。然而,我们发现 IFN-γ/LPS 诱导的巨噬细胞 M1 极化是由 RBP-J-IRF8 途径介导的,而 NT-100 表面更与 FAK-MAPKs 途径相关,特别是 JNK 和 ERK1/2 信号通路。我们的研究表明,植入物表面纳米结构通过与传统生化因素不同的途径具有引发宿主炎症反应的巨大潜力,这可能提醒我们重新考虑纳米表面对细胞功能的独特调节机制。我们的发现为钛植入物修饰以促进组织整合提供了理论基础。