Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, Georgia 30322.
J Biol Chem. 2019 Dec 27;294(52):20109-20121. doi: 10.1074/jbc.RA119.011213. Epub 2019 Nov 21.
The opportunistic bacterial pathogen is a leading cause of serious infections in individuals with cystic fibrosis, compromised immune systems, or severe burns. adhesion to host epithelial cells is enhanced by surface-exposed translation elongation factor EF-Tu carrying a Lys-5 trimethylation, incorporated by the methyltransferase EftM. Thus, the EF-Tu modification by EftM may represent a target to prevent infections in vulnerable individuals. Here, we extend our understanding of EftM activity by defining the molecular mechanism by which it recognizes EF-Tu. Acting on the observation that EftM can bind to EF-Tu lacking its N-terminal peptide (encompassing the Lys-5 target site), we generated an EftM homology model and used it in protein/protein docking studies to predict EftM/EF-Tu interactions. Using site-directed mutagenesis of residues in both proteins, coupled with binding and methyltransferase activity assays, we experimentally validated the predicted protein/protein interface. We also show that EftM cannot methylate the isolated N-terminal EF-Tu peptide and that binding-induced conformational changes in EftM are likely needed to enable placement of the first 5-6 amino acids of EF-Tu into a conserved peptide-binding channel in EftM. In this channel, a group of residues that are highly conserved in EftM proteins position the N-terminal sequence to facilitate Lys-5 modification. Our findings reveal that EftM employs molecular strategies for substrate recognition common among both class I (Rossmann fold) and class II (SET domain) methyltransferases and pave the way for studies seeking a deeper understanding of EftM's mechanism of action on EF-Tu.
机会性病原体 是囊性纤维化、免疫系统受损或严重烧伤个体中严重感染的主要原因。表面暴露的翻译延伸因子 EF-Tu 携带赖氨酸 5 三甲基化,由甲基转移酶 EftM 掺入,从而增强 对宿主上皮细胞的黏附。因此,EftM 对 EF-Tu 的修饰可能代表预防易感染个体 感染的靶点。在这里,我们通过定义它识别 EF-Tu 的分子机制来扩展对 EftM 活性的理解。鉴于 EftM 可以结合缺乏其 N 端肽(包含赖氨酸 5 靶位)的 EF-Tu,我们生成了 EftM 同源模型,并将其用于蛋白质/蛋白质对接研究,以预测 EftM/EF-Tu 相互作用。通过对两种蛋白质中残基的定点突变,结合结合和甲基转移酶活性测定,我们实验验证了预测的蛋白质/蛋白质界面。我们还表明,EftM 不能甲基化分离的 N 端 EF-Tu 肽,并且 EftM 中结合诱导的构象变化可能需要将 EF-Tu 的前 5-6 个氨基酸放置在 EftM 中的保守肽结合通道中。在这个通道中,一组高度保守的 EftM 蛋白中的残基将 N 端序列定位,以促进赖氨酸 5 的修饰。我们的发现表明,EftM 采用了分子策略来识别底物,这些策略在 I 类(罗斯曼折叠)和 II 类(SET 结构域)甲基转移酶中都很常见,并为寻求更深入了解 EftM 对 EF-Tu 作用机制的研究铺平了道路。