College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
Dalton Trans. 2019 Dec 3;48(47):17612-17619. doi: 10.1039/c9dt03701b.
The development of advanced functional porous materials for efficient carbon capture and separation is of prime importance with respect to energy and environmental sustainability and employing covalent triazine frameworks as the adsorbents for carbon capture is deemed to be one of the most promising means to alleviate this issue. Herein, we report the construction of a set of partially fluorinated microporous covalent triazine frameworks (FCTFs) with appropriate CO2-philic functionalities (N and F) and high porosities (up to 2060 m2 g-1) for effective gas adsorption and separation. Markedly, the CO2 adsorption capacity of the FCTF materials prepared at a ZnCl2/monomer ratio of 20 and 400 °C reaches up to 4.70 mmol g-1 at 273 K and 1 bar, which is among the top level of all the reported CTFs. In addition, the studied FCTFs also exhibit a significantly high H2 uptake of 1.88 wt% at 77 K and 1 bar, outperforming most of the reported CTF materials under identical conditions. Apart from this, the obtained FCTF materials also display moderate CO2 selectivities over N2 (28) and CH4 (5.6) at room temperature.
开发用于高效碳捕获和分离的先进功能多孔材料对于能源和环境的可持续性至关重要,而将共价三嗪框架用作碳捕获的吸附剂被认为是缓解这一问题的最有前途的方法之一。在此,我们报告了一组部分氟化微孔共价三嗪框架(FCTF)的构建,它们具有适当的 CO2 亲和性功能(N 和 F)和高孔隙率(高达 2060 m2 g-1),可有效进行气体吸附和分离。值得注意的是,在 ZnCl2/单体比为 20 和 400°C 下制备的 FCTF 材料的 CO2 吸附容量在 273 K 和 1 bar 下高达 4.70 mmol g-1,这在所有报道的 CTF 中处于领先水平。此外,所研究的 FCTF 还在 77 K 和 1 bar 下表现出显著高的 H2 吸收量为 1.88 wt%,优于大多数在相同条件下报道的 CTF 材料。除此之外,在室温下,所获得的 FCTF 材料还对 N2(28)和 CH4(5.6)显示出适度的 CO2 选择性。