Suppr超能文献

临床试验中不良事件的定量评估:中期和最终分析时方法的比较。

Quantitative assessment of adverse events in clinical trials: Comparison of methods at an interim and the final analysis.

机构信息

Novartis Pharma AG, Basel, Switzerland.

出版信息

Biom J. 2020 May;62(3):658-669. doi: 10.1002/bimj.201800234. Epub 2019 Nov 22.

Abstract

In clinical study reports (CSRs), adverse events (AEs) are commonly summarized using the incidence proportion (IP). IPs can be calculated for all types of AEs and are often interpreted as the probability that a treated patient experiences specific AEs. Exposure time can be taken into account with time-to-event methods. Using one minus Kaplan-Meier (1-KM) is known to overestimate the AE probability in the presence of competing events (CEs). The use of a nonparametric estimator of the cumulative incidence function (CIF) has therefore been advocated as more appropriate. In this paper, we compare different methods to estimate the probability of one selected AE. In particular, we investigate whether the proposed methods provide a reasonable estimate of the AE probability at an interim analysis (IA). The characteristics of the methods in the presence of a CE are illustrated using data from a breast cancer study and we quantify the potential bias in a simulation study. At the final analysis performed for the CSR, 1-KM systematically overestimates and in most cases IP slightly underestimates the given AE probability. CIF has the lowest bias in most simulation scenarios. All methods might lead to biased estimates at the IA except for AEs with early onset. The magnitude of the bias varies with the time-to-AE and/or CE occurrence, the selection of event-specific hazards and the amount of censoring. In general, reporting AE probabilities for prespecified fixed time points is recommended.

摘要

在临床研究报告(CSR)中,通常使用发生率比例(IP)来汇总不良事件(AE)。可以计算所有类型的 AE 的 IP,并将其解释为接受治疗的患者发生特定 AE 的概率。可以使用时间事件方法考虑暴露时间。在存在竞争事件(CE)的情况下,使用 1-减 Kaplan-Meier(1-KM)被认为会高估 AE 概率。因此,提倡使用累积发生率函数(CIF)的非参数估计器更为合适。在本文中,我们比较了不同方法来估计一种选定的 AE 的概率。特别是,我们研究了这些方法是否在中期分析(IA)时提供了 AE 概率的合理估计。使用乳腺癌研究的数据说明了在 CE 存在的情况下这些方法的特征,并在模拟研究中量化了潜在的偏差。在 CSR 进行的最终分析中,1-KM 系统地高估了 AE 概率,而在大多数情况下,IP 则略微低估了给定的 AE 概率。在大多数模拟场景中,CIF 的偏差最小。除了早期发病的 AE 外,所有方法在 IA 时都可能导致有偏差的估计。偏差的大小取决于 AE 与 CE 发生的时间、选择的特定事件风险和 censoring 的数量。一般来说,建议报告预定的固定时间点的 AE 概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验