Suppr超能文献

不同随访时间的不良事件生存分析(SAVVY)-不良事件风险估计

Survival analysis for AdVerse events with VarYing follow-up times (SAVVY)-estimation of adverse event risks.

作者信息

Stegherr Regina, Schmoor Claudia, Beyersmann Jan, Rufibach Kaspar, Jehl Valentine, Brückner Andreas, Eisele Lewin, Künzel Thomas, Kupas Katrin, Langer Frank, Leverkus Friedhelm, Loos Anja, Norenberg Christiane, Voss Florian, Friede Tim

机构信息

Institute of Statistics, Ulm University, Ulm, Germany.

Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.

出版信息

Trials. 2021 Jun 29;22(1):420. doi: 10.1186/s13063-021-05354-x.

Abstract

BACKGROUND

The SAVVY project aims to improve the analyses of adverse events (AEs), whether prespecified or emerging, in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). Although statistical methodologies have advanced, in AE analyses, often the incidence proportion, the incidence density, or a non-parametric Kaplan-Meier estimator are used, which ignore either censoring or CEs. In an empirical study including randomized clinical trials from several sponsor organizations, these potential sources of bias are investigated. The main purpose is to compare the estimators that are typically used to quantify AE risk within trial arms to the non-parametric Aalen-Johansen estimator as the gold-standard for estimating cumulative AE probabilities. A follow-up paper will consider consequences when comparing safety between treatment groups.

METHODS

Estimators are compared with descriptive statistics, graphical displays, and a more formal assessment using a random effects meta-analysis. The influence of different factors on the size of deviations from the gold-standard is investigated in a meta-regression. Comparisons are conducted at the maximum follow-up time and at earlier evaluation times. CEs definition does not only include death before AE but also end of follow-up for AEs due to events related to the disease course or safety of the treatment.

RESULTS

Ten sponsor organizations provided 17 clinical trials including 186 types of investigated AEs. The one minus Kaplan-Meier estimator was on average about 1.2-fold larger than the Aalen-Johansen estimator and the probability transform of the incidence density ignoring CEs was even 2-fold larger. The average bias using the incidence proportion was less than 5%. Assuming constant hazards using incidence densities was hardly an issue provided that CEs were accounted for. The meta-regression showed that the bias depended mainly on the amount of censoring and on the amount of CEs.

CONCLUSIONS

The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. We recommend using the Aalen-Johansen estimator with an appropriate definition of CEs whenever the risk for AEs is to be quantified and to change the guidelines accordingly.

摘要

背景

SAVVY项目旨在通过运用能恰当处理不同随访时间和竞争事件(CE)的生存技术,改进临床试验中不良事件(AE)的分析,无论这些不良事件是预先设定的还是新出现的。尽管统计方法有所进步,但在AE分析中,通常使用的是发病率比例、发病率密度或非参数Kaplan-Meier估计量,这些方法要么忽略了删失,要么忽略了CE。在一项包括来自多个申办组织的随机临床试验的实证研究中,对这些潜在的偏倚来源进行了调查。主要目的是将通常用于量化试验组内AE风险的估计量与作为估计累积AE概率金标准的非参数Aalen-Johansen估计量进行比较。后续论文将考虑比较治疗组之间安全性时的后果。

方法

使用描述性统计、图形展示以及随机效应荟萃分析进行更正式的评估,对估计量进行比较。在荟萃回归中研究不同因素对与金标准偏差大小的影响。在最大随访时间和更早的评估时间进行比较。CE的定义不仅包括AE发生前的死亡,还包括由于与疾病进程或治疗安全性相关的事件导致的AE随访结束。

结果

10个申办组织提供了17项临床试验数据,并涉及186种被调查的AE。1减去Kaplan-Meier估计量平均比Aalen-Johansen估计量大1.2倍左右,而忽略删失的发病率密度的概率变换甚至大2倍。使用发病率比例时的平均偏倚小于5%。只要考虑了CE,使用发病率密度假设风险恒定几乎不是问题。荟萃回归表明,偏倚主要取决于删失量和CE量。

结论

累积AE概率估计量的选择和CE的定义至关重要。我们建议在需要量化AE风险时,使用对CE有适当定义的Aalen-Johansen估计量,并相应地改变指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ae/8244188/0e690832969d/13063_2021_5354_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验