Suppr超能文献

自发眼动率预测强化学习中个体差异的探索和利用。

Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning.

机构信息

Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, The Netherlands.

Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2019 Nov 22;9(1):17436. doi: 10.1038/s41598-019-53805-y.

Abstract

Spontaneous eye blink rate (sEBR) has been linked to striatal dopamine function and to how individuals make value-based choices after a period of reinforcement learning (RL). While sEBR is thought to reflect how individuals learn from the negative outcomes of their choices, this idea has not been tested explicitly. This study assessed how individual differences in sEBR relate to learning by focusing on the cognitive processes that drive RL. Using Bayesian latent mixture modelling to quantify the mapping between RL behaviour and its underlying cognitive processes, we were able to differentiate low and high sEBR individuals at the level of these cognitive processes. Further inspection of these cognitive processes indicated that sEBR uniquely indexed explore-exploit tendencies during RL: lower sEBR predicted exploitative choices for high valued options, whereas higher sEBR predicted exploration of lower value options. This relationship was additionally supported by a network analysis where, notably, no link was observed between sEBR and how individuals learned from negative outcomes. Our findings challenge the notion that sEBR predicts learning from negative outcomes during RL, and suggest that sEBR predicts individual explore-exploit tendencies. These then influence value sensitivity during choices to support successful performance when facing uncertain reward.

摘要

自发眨眼率(sEBR)与纹状体多巴胺功能以及个体在强化学习(RL)后如何进行基于价值的选择有关。虽然 sEBR 被认为反映了个体从选择的负面结果中学习的能力,但这一观点尚未得到明确验证。本研究通过关注推动 RL 的认知过程,评估了 sEBR 的个体差异与学习的关系。我们使用贝叶斯潜在混合模型来量化 RL 行为与其潜在认知过程之间的映射,从而能够在这些认知过程的水平上区分 sEBR 低和高的个体。对这些认知过程的进一步检查表明,sEBR 可以独特地反映 RL 期间的探索-利用倾向:较低的 sEBR 预测对高价值选项的利用性选择,而较高的 sEBR 预测对低价值选项的探索。网络分析进一步支持了这一关系,值得注意的是,在 sEBR 与个体如何从负面结果中学习之间没有观察到联系。我们的发现挑战了 sEBR 预测 RL 期间从负面结果中学习的观点,并表明 sEBR 预测个体的探索-利用倾向。然后,这些倾向会影响选择时的价值敏感性,以支持在面对不确定奖励时的成功表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c2/6874684/c11e146f3a9f/41598_2019_53805_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验