Suppr超能文献

正则化偏相关网络教程。

A tutorial on regularized partial correlation networks.

机构信息

Department of Psychological Methods, University of Amsterdam.

出版信息

Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

Abstract

Recent years have seen an emergence of network modeling applied to moods, attitudes, and problems in the realm of psychology. In this framework, psychological variables are understood to directly affect each other rather than being caused by an unobserved latent entity. In this tutorial, we introduce the reader to estimating the most popular network model for psychological data: the partial correlation network. We describe how regularization techniques can be used to efficiently estimate a parsimonious and interpretable network structure in psychological data. We show how to perform these analyses in R and demonstrate the method in an empirical example on posttraumatic stress disorder data. In addition, we discuss the effect of the hyperparameter that needs to be manually set by the researcher, how to handle non-normal data, how to determine the required sample size for a network analysis, and provide a checklist with potential solutions for problems that can arise when estimating regularized partial correlation networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

摘要

近年来,网络建模已经开始应用于心理学领域的情绪、态度和问题。在这个框架中,心理变量被理解为直接相互影响,而不是由未被观察到的潜在实体引起的。在本教程中,我们将向读者介绍用于心理数据的最流行的网络模型:偏相关网络。我们描述了如何使用正则化技术来有效地估计心理数据中简洁且可解释的网络结构。我们展示了如何在 R 中执行这些分析,并在创伤后应激障碍数据的实证示例中演示该方法。此外,我们还讨论了需要由研究人员手动设置的超参数的影响、如何处理非正态数据、如何确定网络分析所需的样本量,并提供了一个检查表,其中包含在估计正则化偏相关网络时可能出现的问题的潜在解决方案。(PsycINFO 数据库记录(c)2018 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验