Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France; Aix-marseille Université, Marseille, France.
Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Canada.
Neurobiol Dis. 2020 Feb;134:104681. doi: 10.1016/j.nbd.2019.104681. Epub 2019 Nov 20.
Hyperactivity of glutamatergic corticostrial pathways is recognized as a key pathophysiological mechanism contributing to development of PD symptoms and dopaminergic neurotoxicity. Subset of corticostriatal projection neurons uses Zn as a co-transmitter alongside glutamate, but the role of synaptically released Zn in PD remains unexplored. We used genetically modified mice and pharmacological tools in combination with 6-hydroxydopamine (6-OHDA) lesion models of PD to investigate the contribution of synaptic zinc to disease associated behavioral deficits and neurodegeneration. Vesicular zinc transporter-3 (ZnT3) knockout mice lacking releasable Zn were more resistant to locomotor deficit and memory impairment of nigrostriatal dopamine (DA) denervation compared to wildtype littermates. The loss of striatal dopaminergic fibers was comparable between genotypes, indicating that synaptically released Zn contributes to behavioral deficits but not neurotoxic effects of 6-OHDA. To gain further insight into the mechanisms of Zn actions, we used the extracellular Zn chelator CaEDTA and knock-in mice lacking the high affinity Zn inhibition of GluN2A-containing NMDA receptors (GluN2A-NMDARs). Acute chelation of extracellular Zn in the striatum restored locomotor deficit of 6-OHDA lesion, confirming that synaptic Zn suppresses locomotor behavior. Disruption of the Zn-GluN2A interaction had, on the other hand, no impact on locomotor deficit or neurotoxic effect of 6-OHDA. Collectively, these findings provide clear evidence for the implication of striatal synaptic Zn in the pathophysiology of PD. They unveil that synaptic Zn plays predominantly a detrimental role by promoting motor and cognitive deficits caused by nigrostriatal DA denervation, pointing towards new therapeutic interventions.
谷氨酸能皮质纹状体通路的过度活跃被认为是导致 PD 症状和多巴胺能神经毒性发展的关键病理生理机制。皮质纹状体投射神经元亚群将 Zn 用作与谷氨酸一起的共递质,但突触释放的 Zn 在 PD 中的作用仍未得到探索。我们使用基因修饰小鼠和药理学工具,结合 6-羟多巴胺(6-OHDA)PD 损伤模型,研究突触锌对与疾病相关的行为缺陷和神经退行性变的贡献。缺乏可释放 Zn 的囊泡锌转运蛋白 3(ZnT3)敲除小鼠对黑质纹状体多巴胺(DA)去神经损伤引起的运动缺陷和记忆障碍的抵抗力比对野生型同窝仔更强。两种基因型之间纹状体多巴胺能纤维的丢失相当,表明突触释放的 Zn 有助于行为缺陷,但不能导致 6-OHDA 的神经毒性作用。为了更深入地了解 Zn 作用的机制,我们使用了细胞外 Zn 螯合剂 CaEDTA 和缺乏高亲和力 Zn 抑制含 GluN2A 的 NMDA 受体(GluN2A-NMDARs)的基因敲入小鼠。纹状体细胞外 Zn 的急性螯合恢复了 6-OHDA 损伤的运动缺陷,证实了突触 Zn 抑制运动行为。另一方面,破坏 Zn-GluN2A 相互作用对 6-OHDA 的运动缺陷或神经毒性作用没有影响。总的来说,这些发现为纹状体突触 Zn 在 PD 病理生理学中的作用提供了明确的证据。它们揭示了突触 Zn 通过促进黑质纹状体 DA 去神经损伤引起的运动和认知缺陷,主要发挥有害作用,为新的治疗干预指明了方向。