Suppr超能文献

容错弹塑性格材料。

Fault-tolerant elastic-plastic lattice material.

机构信息

School of Mechanical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel.

Faculty of Aerospace Engineering, Technion, Haifa, Israel.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Jan 10;378(2162):20190107. doi: 10.1098/rsta.2019.0107. Epub 2019 Nov 25.

Abstract

The paper describes a fault-tolerant design of a special two-dimensional beam lattice. The morphology of such lattices was suggested in the theoretical papers (Cherkaev and Ryvkin 2019 , 485-501; Cherkaev and Ryvkin 2019 , 503-519), where its superior properties were found numerically. The proposed design consists of beam elements with two different thicknesses; the lattice is macro-isotropic and stretch dominated. Here, we experimentally verify the fault-tolerant properties of these lattices. The specimens were three-dimensional-printed from the VeroWhite elastoplastic material. The lattice is subjected to uniaxial tensile loading. Due to its morphology, the failed beams are evenly distributed in the lattice at the initial stage of damage; at this stage, the material remains intact, preserves its bearing ability, and supports relatively high strains before the final failure. At the initial phase of damage, the thinner beams buckle; then another group of separated thin beams plastically yield and rupture. The fatal macro-crack propagates after the distributed damage reaches a critical level. This initial distributed damage stage allows for a better energy absorption rate before the catastrophic failure of the structure. The experimental results are supported by simulations which confirm that the proposed fault-tolerant material possesses excellent energy absorption properties thanks to the distributed damage stage phenomenon. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

摘要

本文描述了一种特殊二维梁格的容错设计。这种格的形态结构在理论论文中被提出(Cherkaev and Ryvkin 2019, 485-501; Cherkaev and Ryvkin 2019, 503-519),并通过数值计算发现了其优越的性能。所提出的设计由两种不同厚度的梁单元组成;格是宏观各向同性和拉伸主导的。在这里,我们通过实验验证了这些格的容错特性。样品是用 VeroWhite 弹塑性材料通过三维打印制作的。格受到单轴拉伸加载。由于其形态结构,在损伤的初始阶段,失效的梁均匀分布在格中;在这个阶段,材料保持完整,保持其承载能力,并在最终失效之前承受相对较高的应变。在损伤的初始阶段,较薄的梁发生屈曲;然后另一组分离的薄梁发生塑性屈服和断裂。在分布式损伤达到临界水平后,致命的宏观裂纹会传播。在结构灾难性失效之前,这种初始分布式损伤阶段允许更好的能量吸收率。实验结果得到了模拟的支持,模拟结果证实,由于分布式损伤阶段的现象,所提出的容错材料具有优异的能量吸收性能。本文是主题为“结构介质动态现象和局部化建模(第 2 部分)”的一部分。

相似文献

1
Fault-tolerant elastic-plastic lattice material.容错弹塑性格材料。
Philos Trans A Math Phys Eng Sci. 2020 Jan 10;378(2162):20190107. doi: 10.1098/rsta.2019.0107. Epub 2019 Nov 25.
4
Resonant waves and localization phenomena in lattices.晶格中的共振波与局域化现象。
Philos Trans A Math Phys Eng Sci. 2019 Oct 21;377(2156):20190110. doi: 10.1098/rsta.2019.0110. Epub 2019 Sep 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验