Suppr超能文献

尽管结构基元简单且力学性能较差,但结构层次可以赋予材料韧性和抗缺陷能力。

Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks.

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, 77 Massachusetts Ave. Room 1-235A&B, Cambridge, MA 02139, USA.

出版信息

Sci Rep. 2011;1:35. doi: 10.1038/srep00035. Epub 2011 Jul 13.

Abstract

Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects.

摘要

矿化生物材料,如骨骼、海绵或硅藻,提供了承载和防护功能,普遍具有从纳米到宏观的结构层次。在这里,我们通过基于原子建模的自下而上的方法,对基于单一且机械性能较差的脆性基础材料二氧化硅的分层结构对韧性和抗缺陷性的影响进行了系统的研究。我们的分析表明,由于分层结构的引入,材料的裂纹扩展阻力(R 曲线)发生了剧烈变化,这也导致了韧性和抗缺陷性的大幅提高,从而使裂纹能够在广泛的裂纹尺寸范围内稳定扩展。在多达四个层次的范围内,我们发现抗缺陷性呈指数增长,接近 100 微米,而无需引入额外的机制或材料。这与基础材料二氧化硅的抗缺陷性有显著区别,二氧化硅是脆性的,即使是极其微小的纳米级缺陷也非常敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22b0/3216522/b82bed4847a2/srep00035-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验