Suppr超能文献

载微纤维的微球的 3D 生物制造:一种简便的 3D 细胞共培养系统。

3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system.

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Biomater Sci. 2019 Dec 17;8(1):109-117. doi: 10.1039/c9bm01189g.

Abstract

Hierarchical tissues composed of spheroid and fiber structures such as tumors, embryos and glomeruli widely exist in organisms. Methods have been developed to build spheroid and fiber structures, independently, as tissue models in vitro. However, it is still a challenge to print them simultaneously and integrated for effectively mimicking the complicated situations in vivo. Here, we propose a novel 3D cell co-culturing system, "microfiber-laden minispheroid", applying two fluidic phenomena, namely the "rope coiling effect" and "electrohydrodynamics", with a co-axial bioprinting nozzle and high voltage system. Gelatin methacryloyl (GelMA) hydrogels were extruded from the outer nozzle and separated by electrical attraction to form spheroids (∼1800 μm). GelMA mixed with sodium alginate was extruded from the inner nozzle to form fibers (∼180 μm) inside spheroids, whose morphology could be controlled by the ratio of inner and outer nozzle extruding flow rates. We analyzed the fabrication process and the material system in detail, verifying the fabrication feasibility and suitable microenvironment. The encapsulated cells possessed high viabilities. Importantly, the actin of human umbilical vein endothelial cells tended to elongate towards the co-cultured tumor cells, in contrast to the HUVECs cultured alone. We believe that "microfiber-laden minispheroids" could be a potential system for 3D cell co-culturing research in the future.

摘要

分层组织由球体和纤维结构组成,如肿瘤、胚胎和肾小球,广泛存在于生物体内。已经开发出方法来独立构建球体和纤维结构,作为体外组织模型。然而,同时打印它们并集成以有效模拟体内复杂情况仍然是一个挑战。在这里,我们提出了一种新颖的 3D 细胞共培养系统,“微纤维负载的微球”,应用两种流体现象,即“绳卷效应”和“电动力学”,使用同轴生物打印喷嘴和高压系统。明胶甲基丙烯酰(GelMA)水凝胶从外喷嘴挤出,并通过电吸引力分离以形成球体(约 1800μm)。GelMA 与海藻酸钠混合从内喷嘴挤出,在球体内部形成纤维(约 180μm),其形态可以通过内外喷嘴挤出流量比来控制。我们详细分析了制造过程和材料系统,验证了制造的可行性和合适的微环境。封装的细胞具有高活力。重要的是,与人脐静脉内皮细胞(HUVEC)共培养的肿瘤细胞相比,HUVEC 的肌动蛋白倾向于向共培养的肿瘤细胞伸长,而单独培养的 HUVEC 则没有。我们相信“微纤维负载的微球”可能是未来 3D 细胞共培养研究的一个有潜力的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验