Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania.
Chirality. 2020 Feb;32(2):200-214. doi: 10.1002/chir.23153. Epub 2019 Nov 24.
A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643) surfaces. Isotopically labelled 1- C-l-Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination of d-Pro and 1- C-l-Pro when adsorbed as mixtures. On the Cu(111) surface, X-ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643) surface, adsorbed Pro enantiomers decompose with non-enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643) surfaces to a racemic gas phase mixture of d-Pro and 1- C-l-Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non-racemic mixtures of d-Pro and 1- C-l-Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co-adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption of d-Pro and 1- C-l-Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations of dl-Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.
对手性吸附质之间的对映选择性相互作用的基本理解,以及对手性表面相互作用的理解,是揭示对映选择性表面化学起源的关键。在此,研究了氨基酸脯氨酸(Pro)在非手性 Cu(110)和 Cu(111)表面以及手性 Cu(643)表面上的吸附和分解。使用同位素标记的 1- C-l-Pro 来探测 Pro 的分解机制,并允许在吸附混合物时通过质谱学区分 d-Pro 和 1- C-l-Pro。在 Cu(111)表面上,X 射线光电子能谱表明 Pro 以阴离子物种在单层中吸附。在手性 Cu(643)表面上,吸附的 Pro 对映异构体以非对映选择性动力学分解。然而,在平台和弯曲台阶上发现分解动力学有所不同。将手性 Cu(643)表面暴露于 d-Pro 和 1- C-l-Pro 的外消旋气相混合物中,导致吸附的是外消旋混合物;即,吸附不是对映选择性的。然而,暴露于 d-Pro 和 1- C-l-Pro 的非外消旋混合物中,导致表面上对映体过量的放大,表明吸附的 Pro 发生同手性聚集。在共吸附过程中,即使在非常低的覆盖率下也观察到这种放大,这与其他氨基酸的行为明显不同,其他氨基酸仅在达到单层覆盖率后才开始表现出同手性聚集。外消旋 d-Pro 和 1- C-l-Pro 混合物在非手性 Cu(110)上的平衡吸附没有显示出任何聚集,这与 dl-Pro/Cu(110)的先前扫描隧道显微镜 (STM)观察结果一致。这表明从平衡吸附方法和 STM 实验中得到的结果趋于一致,并证实了二维随机固溶体的形成。