Suppr超能文献

人工智能驱动的分子吸附预测(AIMAP)应用于氨基酸在金属上吸附的手性识别。

Artificial intelligence driven molecule adsorption prediction (AIMAP) applied to chirality recognition of amino acid adsorption on metals.

作者信息

Guo Zi-Xing, Song Guo-Liang, Liu Zhi-Pan

机构信息

Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China.

出版信息

Chem Sci. 2024 Jul 18;15(33):13369-13380. doi: 10.1039/d4sc02304h. eCollection 2024 Aug 22.

Abstract

Predicting the adsorption structure of molecules has long been a challenging topic given the coupled complexity of surface binding sites and molecule flexibility. Here, we develop AIMAP, an Artificial Intelligence Driven Molecule Adsorption Prediction tool, to achieve the general-purpose end-to-end prediction of molecule adsorption structures. AIMAP features efficient exploration of the global potential energy surface of the adsorption system based on global neural network (G-NN) potential, by rapidly screening qualified adsorption patterns and fine searching using stochastic surface walking (SSW) global optimization. We demonstrate the AIMAP efficiency in constructing the Cu-HCNO6 adsorption database, encompassing 1 182 351 distinct adsorption configurations of 9592 molecules on three copper surfaces. AIMAP is then utilized to identify the best adsorption structure for 18 amino acids (AAs) on achiral Cu surfaces and the chiral Cu(3,1,17) surface. We find that AAs chemisorb on copper surfaces in their highest deprotonated state, through both the carboxylate-amino skeleton and side groups. The chiral recognition is identified for the d-preference of Asp, Glu, and Tyr, and l-preference for His. The physical origin for the enantiospecific adsorption is thus rationalized, pointing to the critical role of the competitive adsorption between functional side groups and the carboxylate-amino skeleton at surface low-coordination sites.

摘要

鉴于表面结合位点和分子灵活性的耦合复杂性,预测分子的吸附结构长期以来一直是一个具有挑战性的课题。在此,我们开发了AIMAP,一种人工智能驱动的分子吸附预测工具,以实现分子吸附结构的通用端到端预测。AIMAP的特点是基于全局神经网络(G-NN)势,通过快速筛选合格的吸附模式并使用随机表面行走(SSW)全局优化进行精细搜索,高效探索吸附系统的全局势能面。我们展示了AIMAP在构建Cu-HCNO6吸附数据库方面的效率,该数据库包含9592个分子在三个铜表面上的1182351种不同吸附构型。然后利用AIMAP确定18种氨基酸(AAs)在手性和非手性铜表面上的最佳吸附结构。我们发现,氨基酸在其最高去质子化状态下通过羧酸盐-氨基骨架和侧基化学吸附在铜表面上。确定了对Asp、Glu和Tyr的d偏好以及对His的l偏好的手性识别。因此,对映体特异性吸附的物理起源得到了合理化解释,指出了功能侧基与羧酸盐-氨基骨架在表面低配位位点处竞争吸附的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/976e/11339975/ff8e29baab8c/d4sc02304h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验