Lin Peirong, Pan Ming, Beck Hylke E, Yang Yuan, Yamazaki Dai, Frasson Renato, David Cédric H, Durand Michael, Pavelsky Tamlin M, Allen George H, Gleason Colin J, Wood Eric F
Department of Civil and Environmental Engineering Princeton University Princeton NJ USA.
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering Tsinghua University Beijing China.
Water Resour Res. 2019 Aug;55(8):6499-6516. doi: 10.1029/2019WR025287. Epub 2019 Aug 5.
Spatiotemporally continuous global river discharge estimates across the full spectrum of stream orders are vital to a range of hydrologic applications, yet they remain poorly constrained. Here we present a carefully designed modeling effort (Variable Infiltration Capacity land surface model and Routing Application for Parallel computatIon of Discharge river routing model) to estimate global river discharge at very high resolutions. The precipitation forcing is from a recently published 0.1° global product that optimally merged gauge-, reanalysis-, and satellite-based data. To constrain runoff simulations, we use a set of machine learning-derived, global runoff characteristics maps (i.e., runoff at various exceedance probability percentiles) for grid-by-grid model calibration and bias correction. To support spaceborne discharge studies, the river flowlines are defined at their true geometry and location as much as possible-approximately 2.94 million vector flowlines (median length 6.8 km) and unit catchments are derived from a high-accuracy global digital elevation model at 3-arcsec resolution (~90 m), which serves as the underlying hydrography for river routing. Our 35-year daily and monthly model simulations are evaluated against over 14,000 gauges globally. Among them, 35% (64%) have a percentage bias within ±20% (±50%), and 29% (62%) have a monthly Kling-Gupta Efficiency ≥0.6 (0.2), showing data robustness at the scale the model is assessed. This reconstructed discharge record can be used as a priori information for the Surface Water and Ocean Topography satellite mission's discharge product, thus named "Global Reach-level A priori Discharge Estimates for Surface Water and Ocean Topography". It can also be used in other hydrologic applications requiring spatially explicit estimates of global river flows.
跨越所有河流等级的时空连续全球河流流量估计对于一系列水文应用至关重要,但目前仍受到很大限制。在此,我们展示了一项精心设计的建模工作(可变下渗能力陆面模型和并行计算流量的河流路由模型),以高分辨率估计全球河流流量。降水强迫数据来自最近发布的0.1°全球产品,该产品对基于雨量计、再分析和卫星的数据进行了优化合并。为了约束径流模拟,我们使用了一组机器学习得出的全球径流特征图(即不同超越概率百分位数下的径流),用于逐网格模型校准和偏差校正。为了支持星载流量研究,尽可能按照河流的真实几何形状和位置定义河流流线——约294万条矢量流线(中位数长度6.8公里),并且单位集水区是从3弧秒分辨率(约90米)的高精度全球数字高程模型中得出的,该模型作为河流路由的基础水文地理数据。我们35年的日模型和月模型模拟结果与全球14000多个测量站的数据进行了对比。其中,35%(64%)的测量站偏差百分比在±20%(±50%)以内,29%(62%)的测量站月克林 - 古普塔效率≥0.6(0.2),这表明在模型评估尺度上数据具有稳健性。这个重建的流量记录可作为地表水和海洋地形卫星任务流量产品的先验信息,因此命名为“地表水和海洋地形的全球流域级先验流量估计”。它还可用于其他需要对全球河流流量进行空间明确估计的水文应用中。