Suppr超能文献

staffing 人员配备对给药错误的影响:基于事件报告数据的文本挖掘分析

The Contribution of Staffing to Medication Administration Errors: A Text Mining Analysis of Incident Report Data.

机构信息

Post-doctoral researcher, Department of Nursing Science, University of Eastern Finland, Kuopio, Finland.

Professor, Department of Nursing Science, University of Eastern Finland, Kuopio University Hospital, Finland.

出版信息

J Nurs Scholarsh. 2020 Jan;52(1):113-123. doi: 10.1111/jnu.12531. Epub 2019 Nov 25.

Abstract

PURPOSE

(a) To describe trigger terms that can be used to identify reports of inadequate staffing contributing to medication administration errors, (b) to identify such reports, (c) to compare the degree of harm within incidents with and without those triggers, and (d) to examine the association between the most commonly reported inadequate staffing trigger terms and the incidence of omission errors and "no harm" terms.

DESIGN AND SETTING

This was a retrospective study using descriptive statistical analysis, text mining, and manual analysis of free text descriptions of medication administration-related incident reports (N = 72,390) reported to the National Reporting and Learning System for England and Wales in 2016.

METHODS

Analysis included identifying terms indicating inadequate staffing (manual analysis), followed by text parsing, filtering, and concept linking (SAS Text Miner tool). IBM SPSS was used to describe the data, compare degree of harm for incidents with and without triggers, and to compare incidence of "omission errors" and "no harm" among the inadequate staffing trigger terms.

FINDINGS

The most effective trigger terms for identifying inadequate staffing were "short staffing" (n = 81), "workload" (n = 80), and "extremely busy" (n = 51). There was significant variation in omission errors across inadequate staffing trigger terms (Fisher's exact test = 44.11, p < .001), with those related to "workload" most likely to accompany a report of an omission, followed by terms that mention "staffing" and being "busy." Prevalence of "no harm" did not vary statistically between the trigger terms (Fisher's exact test = 11.45, p = 0.49), but the triggers "workload," "staffing level," "busy night," and "busy unit" identified incidents with lower levels of "no harm" than for incidents overall.

CONCLUSIONS

Inadequate staffing levels, workload, and working in haste may increase the risk for omissions and other types of error, as well as for patient harm.

CLINICAL RELEVANCE

This work lays the groundwork for creating automated text-analytical systems that could analyze incident reports in real time and flag or monitor staffing levels and related medication administration errors.

摘要

目的

(a) 描述可用于识别报告中因人员配备不足导致给药错误的触发术语,(b) 识别此类报告,(c) 比较有和没有这些触发因素的事件中的伤害程度,以及 (d) 检查最常报告的人员配备不足触发术语与遗漏错误和“无伤害”术语的发生率之间的关联。

设计和设置

这是一项回顾性研究,使用描述性统计分析、文本挖掘和对 2016 年向英格兰和威尔士国家报告和学习系统报告的与给药相关的事件报告的自由文本描述进行手动分析(N = 72390)。

方法

分析包括识别表示人员配备不足的术语(手动分析),然后进行文本解析、过滤和概念链接(SAS Text Miner 工具)。使用 IBM SPSS 描述数据,比较有和没有触发因素的事件的伤害程度,以及在人员配备不足的触发术语中比较“遗漏错误”和“无伤害”的发生率。

结果

最有效的识别人员配备不足的触发术语是“人员配备不足”(n = 81)、“工作量”(n = 80)和“非常忙碌”(n = 51)。在人员配备不足的触发术语中,遗漏错误的发生率存在显著差异(Fisher 精确检验= 44.11,p <.001),与“工作量”相关的术语最有可能伴随着遗漏错误,其次是提到“人员配备”和“忙碌”的术语。“无伤害”的发生率在触发术语之间没有统计学差异(Fisher 精确检验= 11.45,p = 0.49),但“工作量”、“人员配备水平”、“忙碌之夜”和“忙碌单位”等触发因素识别出的事件的“无伤害”水平低于整体事件。

结论

人员配备水平低、工作量大和仓促工作可能会增加遗漏和其他类型错误以及患者伤害的风险。

临床相关性

这项工作为创建实时分析事件报告的自动文本分析系统奠定了基础,并可以标记或监测人员配备水平和相关的给药错误。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验