Suppr超能文献

利用智能手机量化液体、pH 试纸条和侧向流检测中颜色和颜色强度变化的色彩空间通道效率。

The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.

机构信息

Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.

Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.

出版信息

Sensors (Basel). 2019 Nov 21;19(23):5104. doi: 10.3390/s19235104.

Abstract

Bottom-up, end-user based feed, and food analysis through smartphone quantification of lateral flow assays (LFA) has the potential to cause a paradigm shift in testing capabilities. However, most developed devices do not test the presence of and implications of inter-phone variation. Much discussion remains regarding optimum color space for smartphone colorimetric analyses and, an in-depth comparison of color space performance is missing. Moreover, a light-shielding box is often used to avoid variations caused by background illumination while the use of such a bulky add-on may be avoidable through image background correction. Here, quantification performance of individual channels of RGB, HSV, and LAB color space and ΔRGB was determined for color and color intensity variation using pH strips, filter paper with dropped nanoparticles, and colored solutions. LAB and HSV color space channels never outperformed the best RGB channels in any test. Background correction avoided measurement variation if no direct sunlight was used and functioned more efficiently outside a light-shielding box (prediction errors < 5%/35% for color/color intensity change). The system was validated using various phones for quantification of major allergens (i.e., gluten in buffer, bovine milk in goat milk and goat cheese), and, pH in soil extracts with commercial pH strips and LFA. Inter-phone variation was significant for LFA quantification but low using pH strips (prediction errors < 10% for all six phones compared). Thus, assays based on color change hold the strongest promise for end-user adapted smartphone diagnostics.

摘要

基于底层、终端用户的供料和通过智能手机对侧向流动分析(LFA)进行的食品分析有可能引起测试能力的范式转变。然而,大多数开发的设备都不能测试手机之间的差异及其影响。关于智能手机比色分析的最佳颜色空间仍有很多讨论,而且缺少对颜色空间性能的深入比较。此外,通常使用遮光盒来避免由于背景照明引起的变化,而通过图像背景校正,可能可以避免使用这种笨重的附加组件。在这里,使用 pH 试纸、滴有纳米颗粒的滤纸和有色溶液,确定了 RGB、HSV 和 LAB 颜色空间以及ΔRGB 的各个通道的量化性能,以用于颜色和颜色强度变化。在任何测试中,LAB 和 HSV 颜色空间通道都没有超过最佳 RGB 通道。如果没有直接阳光,背景校正可以避免测量变化,并且在遮光盒外更有效(颜色/颜色强度变化的预测误差<5%/35%)。该系统使用各种手机进行了主要过敏原(即缓冲液中的麸质、山羊奶中的牛奶和山羊奶酪)以及商业 pH 试纸上土壤提取物的 pH 值的定量验证。LFA 定量的手机间差异显著,但使用 pH 试纸时差异较小(与所有六款手机相比,预测误差<10%)。因此,基于颜色变化的测定法最有可能为终端用户适应的智能手机诊断提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcc0/6928750/261d0addf7e8/sensors-19-05104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验