Suppr超能文献

终端用户传感器树:一个面向终端用户的传感器数据库。

The end user sensor tree: An end-user friendly sensor database.

机构信息

Institute for Global Food Security, School of Biological Sciences, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.

Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.

出版信息

Biosens Bioelectron. 2019 Apr 1;130:245-253. doi: 10.1016/j.bios.2019.01.055. Epub 2019 Feb 1.

Abstract

Detailed knowledge regarding sensor based technologies for the detection of food contamination often remains concealed within scientific journals or divided between numerous commercial kits which prevents optimal connectivity between companies and end-users. To overcome this barrier The End user Sensor Tree (TEST) has been developed. TEST is a comprehensive, interactive platform including over 900 sensor based methods, retrieved from the scientific literature and commercial market, for aquatic-toxins, mycotoxins, pesticides and microorganism detection. Key analytical parameters are recorded in excel files while a novel classification system is used which provides, tailor-made, experts' feedback using an online decision tree and database introduced here. Additionally, a critical comparison of reviewed sensors is presented alongside a global perspective on research pioneers and commercially available products. The lack of commercial uptake of the academically popular electrochemical and nanomaterial based sensors, as well as multiplexing platforms became very apparent and reasons for this anomaly are discussed.

摘要

详细的基于传感器的食品污染检测技术知识通常隐藏在科学期刊内或分布在众多商业试剂盒之间,这阻碍了公司和最终用户之间的最佳连接。为了克服这一障碍,开发了终端用户传感器树(TEST)。TEST 是一个全面的、交互式平台,包含了 900 多种基于传感器的方法,这些方法来自科学文献和商业市场,用于检测水生毒素、真菌毒素、农药和微生物。关键分析参数记录在 Excel 文件中,同时使用一种新颖的分类系统,该系统使用在线决策树和此处引入的数据库提供定制的专家反馈。此外,还对经过审查的传感器进行了批判性比较,并从全球视角介绍了研究先驱和市售产品。学术上流行的电化学和纳米材料传感器以及多重检测平台缺乏商业应用,这种异常的原因也进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验