Suppr超能文献

心肌灌注成像期间收集的自动钙评分可改善对阻塞性冠状动脉疾病的识别。

Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease.

作者信息

Dekker Mirthe, Waissi Farahnaz, Bank Ingrid E M, Lessmann Nikolas, Išgum Ivana, Velthuis Birgitta K, Scholtens Asbjørn M, Leenders Geert E, Pasterkamp Gerard, de Kleijn Dominique P V, Timmers Leo, Mosterd Arend

机构信息

Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.

Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.

出版信息

Int J Cardiol Heart Vasc. 2019 Nov 19;26:100434. doi: 10.1016/j.ijcha.2019.100434. eCollection 2020 Feb.

Abstract

BACKGROUND

Myocardial perfusion imaging (MPI) is an accurate noninvasive test for patients with suspected obstructive coronary artery disease (CAD) and coronary artery calcium (CAC) score is known to be a powerful predictor of cardiovascular events. Collection of CAC scores simultaneously with MPI is unexplored.

AIM

We aimed to investigate whether automatically derived CAC scores during myocardial perfusion imaging would further improve the diagnostic accuracy of MPI to detect obstructive CAD.

METHODS

We analyzed 150 consecutive patients without a history of coronary revascularization with suspected obstructive CAD who were referred for 82Rb PET/CT and available coronary angiographic data. Myocardial perfusion was evaluated both semi quantitatively as well as quantitatively according to the European guidelines. CAC scores were automatically derived from the low-dose attenuation correction CT scans using previously developed software based on deep learning. Obstructive CAD was defined as stenosis >70% (or >50% in the left main coronary artery) and/or fractional flow reserve (FFR) ≤0.80.

RESULTS

In total 58% of patients had obstructive CAD of which seventy-four percent were male. Addition of CAC scores to MPI and clinical predictors significantly improved the diagnostic accuracy of MPI to detect obstructive CAD. The area under the curve (AUC) increased from 0.87 to 0.91 (p: 0.025). Sensitivity and specificity analysis showed an incremental decrease in false negative tests with our MPI + CAC approach (n = 14 to n = 4), as a consequence an increase in false positive tests was seen (n = 11 to n = 28).

CONCLUSION

CAC scores collected simultaneously with MPI improve the detection of obstructive coronary artery disease in patients without a history of coronary revascularization.

摘要

背景

心肌灌注成像(MPI)是一种用于疑似阻塞性冠状动脉疾病(CAD)患者的准确无创检查,已知冠状动脉钙化(CAC)评分是心血管事件的有力预测指标。同时采集MPI时的CAC评分尚未得到探索。

目的

我们旨在研究心肌灌注成像期间自动得出的CAC评分是否会进一步提高MPI检测阻塞性CAD的诊断准确性。

方法

我们分析了150例无冠状动脉血运重建史且疑似阻塞性CAD的连续患者,这些患者接受了82Rb PET/CT检查并提供了冠状动脉造影数据。根据欧洲指南,对心肌灌注进行了半定量和定量评估。使用基于深度学习的先前开发的软件,从低剂量衰减校正CT扫描中自动得出CAC评分。阻塞性CAD定义为狭窄>70%(或左主干冠状动脉狭窄>50%)和/或血流储备分数(FFR)≤0.80。

结果

总共58%的患者患有阻塞性CAD,其中74%为男性。将CAC评分添加到MPI和临床预测指标中,显著提高了MPI检测阻塞性CAD的诊断准确性。曲线下面积(AUC)从0.87增加到0.91(p:0.025)。敏感性和特异性分析显示,采用我们的MPI + CAC方法,假阴性测试的数量逐渐减少(从n = 14降至n = 4),结果假阳性测试的数量有所增加(从n = 11增至n = 28)。

结论

与MPI同时采集的CAC评分可提高无冠状动脉血运重建史患者阻塞性冠状动脉疾病的检测率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f63f/6872848/0978e1150390/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验