MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China.
Environ Sci Technol. 2020 Feb 4;54(3):1475-1483. doi: 10.1021/acs.est.9b04203. Epub 2020 Jan 10.
Phenylarsonic acid compounds could be oxidized by manganese oxides in surface soils, resulting in quick release of inorganic arsenic. This study investigated the structure-reactivity relationships in the adsorption and oxidative degradation of six substituted phenylarsonic acids on the surface of a major type of manganese oxides, birnessite (δ-MnO), using batch experiments conducted under acidic to neutral conditions. The initial adsorption rates of the substituted phenylarsonic acids on δ-MnO decreased in the order of phenylarsonic acid (PAA) > 4-aminophenylarsonic acid (-ASA) ≈ 2-aminophenylarsonic acid (2-APAA) > 4-hydroxyphenylarsonic acid (4-HPAA) > 2-nitrophenylarsonic acid (2-NPAA) > 4-hydroxy-3-nitrophenylarsonic acid (ROX), which could be attributed to steric hindrance of the substituents and the hydrophobicity of these compounds. The oxidation rates of these structural analogues by δ-MnO decreased in the order of -ASA ≈ 2-APAA > 4-HPAA > ROX, while 2-NPAA and PAA were nonreactive because of the lack of electron-donating substituents on their aromatic rings. The redox reactivity of these compounds agrees well with the electron density at C, which is determined by the types and position of the substituents on the aromatic ring. Although cleavage of the arsonic acid group from the aromatic ring was the predominant transformation pathway, a range of adduct products also formed through cross-coupling of the radicals and radical substitution. The contribution of radical coupling and substitution in overall degradation decreased in the order of -ASA > 2-APAA > 4-HPAA > ROX, which results from the varying reactivity and steric hindrance of the substituents. These insights could help better understand and predict the fate of substituted phenylarsonic acids in manganese oxide-rich surface soils and the associated environmental risk of arsenic pollution.
苯胂酸化合物可以在表层土壤中被锰氧化物氧化,导致无机砷的快速释放。本研究采用批实验,在酸性到中性条件下,研究了六种取代苯胂酸在主要类型的锰氧化物-钠锰矿(δ-MnO)表面的吸附和氧化降解中的结构-反应性关系。取代苯胂酸在δ-MnO 上的初始吸附速率按苯胂酸(PAA)>4-氨基苯胂酸(-ASA)≈2-氨基苯胂酸(2-APAA)>4-羟苯胂酸(4-HPAA)>2-硝基苯胂酸(2-NPAA)>4-羟基-3-硝基苯胂酸(ROX)的顺序降低,这可以归因于取代基的空间位阻和这些化合物的疏水性。这些结构类似物在 δ-MnO 中的氧化速率按-ASA≈2-APAA>4-HPAA>ROX 的顺序降低,而 2-NPAA 和 PAA 由于其芳香环上缺乏供电子取代基而无反应性。这些化合物的氧化还原反应活性与 C 上的电子密度吻合良好,电子密度由芳香环上取代基的类型和位置决定。虽然砷酸基团从芳香环上的断裂是主要的转化途径,但通过自由基的交叉偶联和自由基取代也形成了一系列加合物产物。总的降解过程中,自由基偶联和取代的贡献按-ASA>2-APAA>4-HPAA>ROX 的顺序降低,这是由于取代基的反应性和空间位阻的不同所致。这些见解可以帮助更好地理解和预测取代苯胂酸在富含锰氧化物的表层土壤中的命运及其与砷污染相关的环境风险。