Department of Mechanical Engineering, California State University, Fresno, California 93740, USA.
Phys Rev E. 2019 Oct;100(4-1):043108. doi: 10.1103/PhysRevE.100.043108.
Using the combination of the kinetic theory of gases (KTG), Boltzmann transport equation (BTE), and molecular dynamics (MD) simulations, we study the transport phenomena in the Knudsen layer near a planar evaporating surface. The MD simulation is first used to validate the assumption regarding the anisotropic velocity distribution of vapor molecules in the Knudsen layer. Based on this assumption, we use the KTG to formulate the temperature and density of vapor at the evaporating surface as a function of the evaporation rate and the mass accommodation coefficient (MAC), and we use these vapor properties as the boundary conditions to find the solution to the BTE for the anisotropic vapor flow in the Knudsen layer. From the study of the evaporation into a vacuum, we show the ratio of the macroscopic speed of vapor to the most probable thermal speed of vapor molecules in the flow direction will always reach the maximum value of sqrt[1.5] at the vacuum boundary. The BTE solutions predict that the maximum evaporation flux from a liquid surface at a given temperature depends on both the MAC and the distance between the evaporating surface and the vacuum boundary. From the study of the evaporation and condensation between two parallel plates, we show the BTE solutions give good predictions of transport phenomena in both the anisotropic vapor flow within the Knudsen layer and the isotropic flow out of the Knudsen layer. All the predictions from the BTE are verified by the MD simulation results.
我们结合气体动力学理论(KTG)、玻尔兹曼输运方程(BTE)和分子动力学(MD)模拟,研究了平面蒸发表面附近的克努森层中的输运现象。首先,MD 模拟用于验证克努森层中蒸汽分子各向异性速度分布的假设。基于此假设,我们使用 KTG 将蒸发表面处蒸汽的温度和密度表示为蒸发率和质量传递系数(MAC)的函数,并将这些蒸汽性质用作边界条件,以找到 BTE 在克努森层中各向异性蒸汽流动的解。通过对真空蒸发的研究,我们表明,在流动方向上,宏观蒸汽速度与蒸汽分子最可几热速度的比值在真空边界处始终达到最大值 sqrt[1.5]。BTE 解预测,给定温度下从液体表面的最大蒸发通量取决于 MAC 和蒸发表面与真空边界之间的距离。通过对两个平行板之间的蒸发和冷凝的研究,我们表明,BTE 解很好地预测了克努森层内各向异性蒸汽流动和克努森层外各向同性流动中的输运现象。BTE 的所有预测都通过 MD 模拟结果得到验证。