Bird Eric, Gutierrez Plascencia Jesus, Liang Zhi
Department of Mechanical Engineering, California State University, Fresno, California 93740, USA.
J Chem Phys. 2020 May 14;152(18):184701. doi: 10.1063/1.5144279.
There are two possible thermal transport mechanisms at liquid-gas interfaces, namely, evaporation/condensation (i.e., heat transfer by liquid-vapor phase change at liquid surfaces) and heat conduction (i.e., heat exchange by collisions between gas molecules and liquid surfaces). Using molecular dynamics (MD) simulations, we study thermal transport across the liquid-vapor interface of a model n-dodecane (CH) under various driving force conditions. In each MD simulation, we restrict the thermal energy to be transferred across the liquid-vapor interface by only one mechanism. In spite of the complex intramolecular interactions in n-dodecane molecules, our modeling results indicate that the Schrage relationships, which were shown to give accurate predictions of evaporation and condensation rates of monatomic fluids, are also valid in the prediction of evaporation and condensation rates of n-dodecane. In the case of heat conduction at the liquid-vapor interface of n-dodecane, the interfacial thermal conductance obtained from MD simulations is consistent with the prediction from the kinetic theory of gases. The fundamental understanding of thermal transport mechanisms at liquid-gas interfaces will allow us to formulate appropriate boundary conditions for continuum modeling of heating and evaporation of small fuel droplets.
在液-气界面存在两种可能的热传输机制,即蒸发/冷凝(即在液体表面通过液-气相变进行的热传递)和热传导(即通过气体分子与液体表面之间的碰撞进行的热交换)。我们使用分子动力学(MD)模拟,研究了在各种驱动力条件下,模型正十二烷(CH)液-气界面的热传输情况。在每次MD模拟中,我们将跨液-气界面传输的热能限制为仅通过一种机制。尽管正十二烷分子内存在复杂的相互作用,但我们的建模结果表明,被证明能准确预测单原子流体蒸发和冷凝速率的施拉格关系,在预测正十二烷的蒸发和冷凝速率时同样有效。对于正十二烷液-气界面的热传导情况,从MD模拟获得的界面热导率与气体动力学理论的预测结果一致。对液-气界面热传输机制的基本理解将使我们能够为小燃料液滴加热和蒸发的连续介质建模制定合适的边界条件。