Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853.
Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456.
Plant Physiol. 2020 Feb;182(2):992-1006. doi: 10.1104/pp.19.01300. Epub 2019 Nov 26.
Malate accumulation in the vacuole largely determines apple () fruit acidity, and low fruit acidity is strongly associated with truncation of , an ortholog of () in Arabidopsis (). A mutation at base 1,455 in the open reading frame of leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in oocytes and cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.
液泡中苹果酸的积累在很大程度上决定了苹果(Malus domestica)果实的酸度,而低果实酸度与截短(truncation)密切相关,截短的是拟南芥(Arabidopsis)中()的同源物(ortholog)。在 的开放阅读框中的第 1455 个碱基发生突变会导致一个过早的终止密码子,从而使蛋白质在其 C 末端截短 84 个氨基酸。在这里,我们报告说全长蛋白 Ma1 和其天然存在的截短蛋白 ma1 都定位于液泡膜;当在卵母细胞和 细胞中表达时,Ma1 介导依赖苹果酸的内向整流电流,而 ma1 介导的跨膜电流要弱得多,表明 ma1 对苹果酸的转运活性明显低于 Ma1。在‘McIntosh’苹果叶片、‘Empire’苹果果实和‘Orin’苹果愈伤组织中,通过 RNA 干扰抑制 表达,导致苹果酸水平显著下降。对来自 17 个种的广泛遗传背景的 186 个苹果种质的 表达进行基因分型和表型分析,结合上述功能分析表明,Ma1 在决定果实酸度方面起着关键作用,而 Ma1 截短为 ma1 是苹果果实低酸度的遗传原因。此外,我们鉴定了所有定位于液泡膜的 ALMT 中保守的 C 端结构域,该结构域对于 Ma1 功能至关重要;该保守结构域内的蛋白截短会显著降低 Ma1 的转运活性。我们得出的结论是,Ma1 截短为 ma1 通过去除保守的 C 端结构域降低了其苹果酸转运功能,导致苹果果实低酸度。