Hu Da-Gang, Zhang Mengxia, Li Chunlong, Zhao Ting-Ting, Du Lian-Da, Sun Quan, Wang Chu-Kun, Meng Dong, Sun Cui-Hui, Fei Zhangjun, Dandekar Abhaya M, Cheng Lailiang
Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koae328.
High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.1, which complements the Arabidopsis (Arabidopsis thaliana) H1 deficient mutant and functions as a transcription factor. MdH1.1 activates MdMYB73, MdCIbHLH1, and MdPH5 expression by directly binding to their promoters. MdMYB73, in return, binds to the promoter of MdH1.1 to enhance its transcription. This MdH1.1-MdMYB73 feedback loop responds to sorbitol, regulating Ma1 expression. Antisense suppression of either MdH1.1 or MdMYB73 expression significantly decreases whereas overexpression increases Ma1 expression and malate accumulation. These findings demonstrate that MdH1.1, in addition to being an architectural protein for chromatin structure, operates as a transcription factor orchestrating malic acid accumulation in response to sorbitol, revealing how sugar signaling modulates vacuolar malate transport via a linker histone in plants.
高碳水化合物供应促进肉质果实中苹果酸的积累,但其潜在机制尚不清楚。在这里,我们表明,苹果(Malus domestica)中醛糖-6-磷酸还原酶的反义抑制降低了果实和叶片中山梨醇和苹果酸的浓度,以及几个参与液泡苹果酸转运的基因的转录水平,包括铝激活苹果酸转运蛋白(ALMT)基因MdALMT9(Ma1)、P-ATP酶基因MdPH5、MYB转录因子基因MdMYB73和冷诱导碱性螺旋-环-螺旋转录因子基因MdCIbHLH1。我们鉴定出一种连接组蛋白H1变体MdH1.1,它可以补充拟南芥(Arabidopsis thaliana)H1缺陷突变体并作为转录因子发挥作用。MdH1.1通过直接结合其启动子来激活MdMYB73、MdCIbHLH1和MdPH5的表达。反过来,MdMYB73与MdH1.1的启动子结合以增强其转录。这个MdH1.1-MdMYB73反馈环对山梨醇作出反应,调节Ma1的表达。反义抑制MdH1.1或MdMYB73的表达会显著降低,而过表达则会增加Ma1的表达和苹果酸的积累。这些发现表明,MdH1.1除了作为染色质结构的结构蛋白外,还作为一种转录因子,协调苹果酸响应山梨醇的积累,揭示了糖信号如何通过植物中的连接组蛋白调节液泡苹果酸转运。