Suppr超能文献

预测接受质子治疗的头颈癌患者毒性的生物学模型。

Biological Model for Predicting Toxicity in Head and Neck Cancer Patients Receiving Proton Therapy.

作者信息

Fossum Croix C, Beltran Chris J, Whitaker Thomas J, Ma Daniel J, Foote Robert L

机构信息

Mayo Medical School, Rochester, MN, USA.

Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA.

出版信息

Int J Part Ther. 2017 Fall;4(2):18-25. doi: 10.14338/IJPT-17-00015. Epub 2017 Dec 28.

Abstract

PURPOSE

To use a linear energy transfer (LET) dependent formula for relative biological effectiveness (RBE) to generate a biological model that can be used to predict toxicity in patients treated with proton therapy for cancer of the head and neck.

PATIENTS AND METHODS

Patients treated with protons to a dose of 60 to 70 Gy (RBE = 1.1) for head and neck cancer were eligible to participate in this study. Treatment plans were developed using graphics processing unit Monte Carlo calculations. The equation, RBE = (1.1)[0.08(LET)+0.88], was the biological model. The physical model assumes RBE = 1.1. Tumor volumes and organs at risk (OARs) were contoured, and isodose lines were created for 105%-120% of the prescribed dose. Dose to volume of OARs was calculated for both models for comparative purposes. Physician-reported toxicity was graded from 0 to 5 using the Common Terminology Criteria for Adverse Events, version 4.03. Patient-reported outcomes were obtained using the Promis10 and European Organisation for Research and Treatment of Cancer's QLQ-H&N35 instruments.

RESULTS

Eleven patients were included in this study. In each case the biological model revealed an increased dose to several OARs compared with the physical model. For selected OARs, the volume receiving >105% of the target dose was 2-fold to 15-fold greater in the biological model than the volume predicted by the physical model. Patients experienced toxicity that was consistent with the dose to OARs predicted by the biological model. Furthermore, 1 patient developed mucosal ulceration and another developed osteoradionecrosis at the location of a biological hot spot. In each case, the biological hot spot was located 2 mm inside the clinical target volume.

CONCLUSION

The results suggest that increases in dose predicted by the biological model are clinically relevant and that LET and RBE corrections and optimization should be a component of the treatment-planning process in proton therapy.

摘要

目的

使用基于线性能量传递(LET)的相对生物效应(RBE)公式生成一个生物模型,该模型可用于预测接受质子治疗的头颈癌患者的毒性。

患者与方法

接受质子治疗、剂量为60至70 Gy(RBE = 1.1)的头颈癌患者符合参与本研究的条件。使用图形处理单元蒙特卡罗计算制定治疗计划。生物模型的方程为RBE = (1.1)[0.08(LET)+0.88]。物理模型假设RBE = 1.1。勾勒出肿瘤体积和危及器官(OARs),并创建规定剂量105% - 120%的等剂量线。为进行比较,计算了两种模型下OARs的剂量体积。使用不良事件通用术语标准4.03版将医生报告的毒性从0至5级进行分级。使用患者报告结果测量信息系统10(Promis10)和欧洲癌症研究与治疗组织的QLQ - H&N35工具获取患者报告的结果。

结果

本研究纳入了11名患者。在每种情况下,生物模型显示与物理模型相比,多个OARs的剂量增加。对于选定的OARs,接受超过目标剂量105%的体积在生物模型中比物理模型预测的体积大2倍至15倍。患者经历的毒性与生物模型预测的OARs剂量一致。此外,1名患者发生黏膜溃疡,另1名患者在生物热点部位发生骨放射性坏死。在每种情况下,生物热点位于临床靶体积内2毫米处。

结论

结果表明生物模型预测的剂量增加具有临床相关性,并且LET和RBE校正及优化应成为质子治疗计划过程的一部分。

相似文献

10
Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy.调强质子治疗中固定与可变相对生物学效应的计算
Adv Radiat Oncol. 2018 Dec 13;4(1):156-167. doi: 10.1016/j.adro.2018.08.020. eCollection 2019 Jan-Mar.

引用本文的文献

7
Osteoradionecrosis of the jaw: A mini review.颌骨放射性骨坏死:一篇综述
Front Oral Health. 2022 Jul 28;3:980786. doi: 10.3389/froh.2022.980786. eCollection 2022.
8
Biological Effectiveness of Ion Beam for Cell Irradiations.离子束对细胞照射的生物学效应
Front Oncol. 2022 Jun 29;12:847090. doi: 10.3389/fonc.2022.847090. eCollection 2022.
9
Initial Experience with Proton Beam Therapy for Differentiated Thyroid Cancer.质子束治疗分化型甲状腺癌的初步经验
Int J Part Ther. 2021 Jun 25;8(1):311-318. doi: 10.14338/IJPT-D-20-00053. eCollection 2021 Summer.

本文引用的文献

2
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer.基于线性能量传递的调强质子治疗计划的重新优化
Int J Radiat Oncol Biol Phys. 2016 Dec 1;96(5):1097-1106. doi: 10.1016/j.ijrobp.2016.08.038. Epub 2016 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验