Department of Ophthalmology, University of California, San Diego, La Jolla, 92037, USA.
Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Mol Neurodegener. 2019 Nov 27;14(1):44. doi: 10.1186/s13024-019-0345-1.
Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy. Moreover, we showed that DLK and LZK are the major upstream triggers for JUN N-terminal kinase (JNK) signaling following total axonal transection. However, the degree to which DLK/LZK are involved in TAI/TBI is unknown.
Here we used the impact acceleration (IA) model of diffuse TBI, which produces TAI in the visual system, and complementary genetic and pharmacologic approaches to disrupt DLK and LZK, and explored whether DLK and LZK play a role in RGC perikaryal and axonal degeneration in response to TAI.
Our findings show that the IA model activates DLK/JNK/JUN signaling but, in contrast to axotomy, many RGCs are able to recover from the injury and terminate the activation of the pathway. Moreover, while DLK disruption is sufficient to suppress JUN phosphorylation, combined DLK and LZK inhibition is required to prevent RGC cell death. Finally, we show that the FDA-approved protein kinase inhibitor, sunitinib, which has activity against DLK and LZK, is able to produce similar increases in RGC survival.
The mitogen-activated kinase kinase kinases (MAP3Ks), DLK and LZK, participate in cell death signaling of CNS neurons in response to TBI. Moreover, sustained pharmacologic inhibition of DLK is neuroprotective, an effect creating an opportunity to potentially translate these findings to patients with TBI.
创伤性脑损伤(TBI)是中枢神经系统神经退行性变的主要原因,目前尚无改变疾病进程的治疗方法。它通常与一种特定类型的轴突生物力学破坏有关,称为创伤性轴索损伤(TAI),这常常导致中枢神经系统神经元的轴突和有时胞体的退化。我们之前曾使用基于基因组规模、阵列 RNA 干扰的筛选方法,在原代小鼠视网膜神经节细胞(RGC)中鉴定出一对相关的激酶,即双亮氨酸拉链激酶(DLK)和亮氨酸拉链激酶(LZK),它们是轴突切断后细胞死亡的关键介质。此外,我们还表明,DLK 和 LZK 是总轴突横断后 JUN 氨基末端激酶(JNK)信号的主要上游触发因素。然而,DLK/LZK 参与 TAI/TBI 的程度尚不清楚。
在这里,我们使用了弥漫性 TBI 的冲击加速度(IA)模型,该模型在视觉系统中产生 TAI,并采用互补的遗传和药理学方法来破坏 DLK 和 LZK,探讨了 DLK 和 LZK 是否在 TAI 引起的 RGC 胞体和轴突退化中发挥作用。
我们的研究结果表明,IA 模型激活了 DLK/JNK/JUN 信号通路,但与轴突切断不同,许多 RGC 能够从损伤中恢复并终止该通路的激活。此外,虽然 DLK 破坏足以抑制 JUN 磷酸化,但需要同时抑制 DLK 和 LZK 才能防止 RGC 细胞死亡。最后,我们发现,已被 FDA 批准的蛋白激酶抑制剂舒尼替尼对 DLK 和 LZK 具有活性,能够使 RGC 存活率产生类似的增加。
丝裂原激活的蛋白激酶激酶激酶(MAP3Ks)DLK 和 LZK 参与了中枢神经系统神经元对 TBI 的细胞死亡信号转导。此外,持续的药理学抑制 DLK 具有神经保护作用,这一效应为将这些发现转化为 TBI 患者提供了机会。