International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia.
Phys Chem Chem Phys. 2019 Dec 11;21(48):26477-26482. doi: 10.1039/c9cp02913c.
Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in gas and liquid phases. Pairwise addition of parahydrogen to the hydrogenation substrate imparts nuclear spin order to reaction products, manifested as enhanced 1H NMR signals from the nascent proton sites. Nanoscale metal catalysts immobilized on supports comprise a promising class of catalysts for producing PHIP effects; however, on such catalysts the percentage of substrates undergoing the pairwise addition route-a necessary condition for observing PHIP-is usually low. In this paper, we present a systematic study of several metal catalysts (Rh, Pt, Pd, and Ir) supported on TiO2 in liquid-phase hydrogenation of different prototypical phenylalkynes (phenylacetylene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) with parahydrogen. Catalyst activity and selectivity were found to be affected by both the nature of the active metal and the percentage of metal loading. It was demonstrated that the optimal catalyst for production of hyperpolarized products is Rh/TiO2 with 4 wt% metal loading, whereas Pd/TiO2 provided the greatest selectivity for semihydrogenation of phenylalkynes. In a study of liquid-phase hydrogenation reaction kinetics, it was shown that reaction order with respect to hydrogen is nearly the same for pairwise and non-pairwise H2 addition-consistent with a similar nature of the catalytically active sites for these reaction pathways.
Para 氢诱导极化 (PHIP) 是一种用于研究气相和液相中氢化反应的强大技术。将 para 氢成对地添加到氢化底物中会赋予反应产物核自旋顺序,表现为新生质子位置的 1H NMR 信号增强。固定在载体上的纳米级金属催化剂是产生 PHIP 效应的一类有前途的催化剂;然而,在这种催化剂上,经历成对添加途径的底物的百分比——观察到 PHIP 的必要条件——通常较低。在本文中,我们对几种金属催化剂(Rh、Pt、Pd 和 Ir)在不同的典型苯炔(苯乙炔、1-苯基-1-丙炔和 3-苯基-1-丙炔)的液相氢化中进行了系统研究,所用的是 para 氢。发现催化剂的活性和选择性受到活性金属的性质和金属负载量的百分比的影响。结果表明,用于生产超极化产物的最佳催化剂是负载量为 4wt%的 Rh/TiO2,而 Pd/TiO2 对苯炔的半氢化提供了最大的选择性。在液相氢化反应动力学研究中,表明对氢的反应级数对于成对和非成对 H2 添加几乎相同——与这些反应途径的催化活性位点具有相似的性质一致。