Suppr超能文献

在人源免疫细胞与肿瘤细胞的体外共培养体系中进行全基因组 CRISPRi/a 筛选

Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells.

机构信息

Department of Pathology, Yale School of Medicine, New Haven, CT, USA.

Department of Genetics, Yale School of Medicine, New Haven, CT, USA.

出版信息

Methods Mol Biol. 2020;2097:231-252. doi: 10.1007/978-1-0716-0203-4_15.

Abstract

Cell-based immunotherapy has achieved preclinical success in certain types of cancer patients, with a few approved cell-based products for clinical use. These achievements revitalized the field of cell engineering/ immunotherapy and brought attention to the opportunities that cell-based immunotherapeutics can offer to patients. On the other hand, obvious indications emphasize the need for a better understanding of the biological mechanisms involved in the immune response. This knowledge may not only ameliorate safety and efficacy, but also determine the possibilities and limitations in use of immune cell engineering for cancer treatment, and facilitate developing novel immunotherapeutic strategies. Recently developed technology based on CRISPR-dCas9 has an immense potential to systematically uncover genetic mechanisms by identifying subsets of essential genes involved in interactions of cancer cells with the immune system. This chapter will present a reliable and reproducible general protocol for the application of genome-wide sgRNA gene-editing tools in the recently established two-cell type co-culture, consisting of immune cells as effectors and cancer cells as targets, utilizing CRISPRi/a-dCas9-based technology.

摘要

基于细胞的免疫疗法在某些类型的癌症患者中取得了临床前的成功,已有少数基于细胞的产品获得批准用于临床应用。这些成就使细胞工程/免疫疗法领域重获生机,并使人们关注到细胞免疫疗法可为患者带来的机遇。另一方面,明显的适应证强调了需要更好地了解免疫反应中涉及的生物学机制。这些知识不仅可以改善安全性和疗效,还可以确定免疫细胞工程在癌症治疗中的应用的可能性和局限性,并有助于开发新的免疫治疗策略。基于 CRISPR-dCas9 的新技术具有巨大的潜力,可以通过鉴定与癌细胞与免疫系统相互作用相关的必需基因的亚群,系统地揭示遗传机制。本章将提供一种可靠且可重复的通用方案,用于在最近建立的两细胞型共培养物(由免疫细胞作为效应物和癌细胞作为靶标组成)中应用全基因组 sgRNA 基因编辑工具,该方案利用了基于 CRISPRi/a-dCas9 的技术。

相似文献

1
Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells.
Methods Mol Biol. 2020;2097:231-252. doi: 10.1007/978-1-0716-0203-4_15.
2
Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression.
Nucleic Acids Res. 2016 Oct 14;44(18):e141. doi: 10.1093/nar/gkw583. Epub 2016 Jun 28.
3
Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe.
G3 (Bethesda). 2021 Apr 15;11(4). doi: 10.1093/g3journal/jkab051.
4
Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes.
J Cell Biol. 2021 Feb 1;220(2). doi: 10.1083/jcb.202006180.
5
Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
Mol Ther. 2020 Jan 8;28(1):29-41. doi: 10.1016/j.ymthe.2019.09.006. Epub 2019 Sep 12.
6
High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
Acta Biomater. 2016 Apr 1;34:143-158. doi: 10.1016/j.actbio.2015.12.036. Epub 2015 Dec 30.
7
Toward tunable dynamic repression using CRISPRi.
Biotechnol J. 2018 Sep;13(9):e1800152. doi: 10.1002/biot.201800152. Epub 2018 May 11.
8
9
Applications of CRISPR Genome Engineering in Cell Biology.
Trends Cell Biol. 2016 Nov;26(11):875-888. doi: 10.1016/j.tcb.2016.08.004. Epub 2016 Sep 3.

引用本文的文献

1
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
2
Targeting the DNA damage response in immuno-oncology: developments and opportunities.
Nat Rev Cancer. 2021 Nov;21(11):701-717. doi: 10.1038/s41568-021-00386-6. Epub 2021 Aug 10.

本文引用的文献

1
The CRISPR tool kit for genome editing and beyond.
Nat Commun. 2018 May 15;9(1):1911. doi: 10.1038/s41467-018-04252-2.
2
CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine.
ACS Chem Biol. 2018 Feb 16;13(2):406-416. doi: 10.1021/acschembio.7b00657. Epub 2017 Oct 24.
3
CRISPR gene-editing tested in a person for the first time.
Nature. 2016 Nov 24;539(7630):479. doi: 10.1038/nature.2016.20988.
4
Highly efficient Cas9-mediated transcriptional programming.
Nat Methods. 2015 Apr;12(4):326-8. doi: 10.1038/nmeth.3312. Epub 2015 Mar 2.
5
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.
6
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
7
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
Nat Biotechnol. 2014 Mar;32(3):267-73. doi: 10.1038/nbt.2800. Epub 2013 Dec 23.
9
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
Cell. 2013 Jul 18;154(2):442-51. doi: 10.1016/j.cell.2013.06.044. Epub 2013 Jul 11.
10
Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells.
Biotechnol J. 2013 Jul;8(7):811-21. doi: 10.1002/biot.201200364. Epub 2013 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验