Suppr超能文献

CRISPRi 和 CRISPRa 哺乳动物细胞筛选技术在精准生物学和医学中的应用

CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine.

机构信息

Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California , San Francisco, California 94158, United States.

Chan Zuckerberg Biohub , San Francisco, California 94158, United States.

出版信息

ACS Chem Biol. 2018 Feb 16;13(2):406-416. doi: 10.1021/acschembio.7b00657. Epub 2017 Oct 24.

Abstract

Next-generation DNA sequencing technologies have led to a massive accumulation of genomic and transcriptomic data from patients and healthy individuals. The major challenge ahead is to understand the functional significance of the elements of the human genome and transcriptome, and implications for diagnosis and treatment. Genetic screens in mammalian cells are a powerful approach to systematically elucidating gene function in health and disease states. In particular, recently developed CRISPR/Cas9-based screening approaches have enormous potential to uncover mechanisms and therapeutic strategies for human diseases. The focus of this review is the use of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) for genetic screens in mammalian cells. We introduce the underlying technology and present different types of CRISPRi/a screens, including those based on cell survival/proliferation, sensitivity to drugs or toxins, fluorescent reporters, and single-cell transcriptomes. Combinatorial screens, in which large numbers of gene pairs are targeted to construct genetic interaction maps, reveal pathway relationships and protein complexes. We compare and contrast CRISPRi and CRISPRa with alternative technologies, including RNA interference (RNAi) and CRISPR nuclease-based screens. Finally, we highlight challenges and opportunities ahead.

摘要

下一代 DNA 测序技术使人们能够从患者和健康个体中积累大量的基因组和转录组数据。当前面临的主要挑战是理解人类基因组和转录组元件的功能意义,以及它们对诊断和治疗的影响。哺乳动物细胞中的遗传筛选是系统阐明健康和疾病状态下基因功能的有力方法。特别是,最近开发的基于 CRISPR/Cas9 的筛选方法具有揭示人类疾病机制和治疗策略的巨大潜力。本文的重点是将 CRISPR 干扰 (CRISPRi) 和 CRISPR 激活 (CRISPRa) 用于哺乳动物细胞中的遗传筛选。我们介绍了其背后的技术,并介绍了不同类型的 CRISPRi/a 筛选方法,包括基于细胞存活/增殖、对药物或毒素的敏感性、荧光报告基因和单细胞转录组的筛选方法。组合筛选方法靶向大量基因对以构建遗传相互作用图谱,揭示途径关系和蛋白质复合物。我们比较和对比了 CRISPRi 和 CRISPRa 与替代技术,包括 RNA 干扰 (RNAi) 和基于 CRISPR 核酸酶的筛选方法。最后,我们强调了未来的挑战和机遇。

相似文献

1
CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine.
ACS Chem Biol. 2018 Feb 16;13(2):406-416. doi: 10.1021/acschembio.7b00657. Epub 2017 Oct 24.
2
Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi.
Genome Res. 2021 Nov;31(11):2120-2130. doi: 10.1101/gr.275607.121. Epub 2021 Aug 18.
3
CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
Mol Ther. 2023 Jul 5;31(7):1920-1937. doi: 10.1016/j.ymthe.2023.03.024. Epub 2023 Mar 24.
4
CRISPR-Based Screening for Stress Response Factors in Mammalian Cells.
Methods Mol Biol. 2022;2428:19-40. doi: 10.1007/978-1-0716-1975-9_2.
5
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
Nat Rev Mol Cell Biol. 2016 Jan;17(1):5-15. doi: 10.1038/nrm.2015.2. Epub 2015 Dec 16.
6
A CRISPR Resource for Individual, Combinatorial, or Multiplexed Gene Knockout.
Mol Cell. 2017 Jul 20;67(2):348-354.e4. doi: 10.1016/j.molcel.2017.06.030.
7
Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.
Mutat Res Rev Mutat Res. 2015 Apr-Jun;764:31-42. doi: 10.1016/j.mrrev.2015.01.002. Epub 2015 Jan 25.
8
CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic lncRNA Network.
Methods Mol Biol. 2021;2348:189-204. doi: 10.1007/978-1-0716-1581-2_13.
9
Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
Genes (Basel). 2023 Apr 13;14(4):906. doi: 10.3390/genes14040906.

引用本文的文献

1
From Microbial Switches to Metabolic Sensors: Rewiring the Gut-Brain Kynurenine Circuit.
Biomedicines. 2025 Aug 19;13(8):2020. doi: 10.3390/biomedicines13082020.
2
Dual-mode CRISPRa/i for genome-scale metabolic rewiring in Escherichia coli.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf818.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
6
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
8
Next generation genetic screens in kinetoplastids.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf515.
9
Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation.
Genome Biol. 2025 Jun 12;26(1):164. doi: 10.1186/s13059-025-03640-4.
10

本文引用的文献

1
Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.
Nature. 2017 Aug 17;548(7667):343-346. doi: 10.1038/nature23451. Epub 2017 Aug 11.
2
Defining a Cancer Dependency Map.
Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.
3
CRISPulator: a discrete simulation tool for pooled genetic screens.
BMC Bioinformatics. 2017 Jul 21;18(1):347. doi: 10.1186/s12859-017-1759-9.
4
Unexpected mutations after CRISPR-Cas9 editing in vivo.
Nat Methods. 2017 May 30;14(6):547-548. doi: 10.1038/nmeth.4293.
6
Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC.
Nat Commun. 2017 May 12;8:15315. doi: 10.1038/ncomms15315.
7
Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells.
Chem Commun (Camb). 2017 Jun 29;53(53):7162-7167. doi: 10.1039/c7cc02349a.
8
Genetic interaction mapping in mammalian cells using CRISPR interference.
Nat Methods. 2017 Jun;14(6):577-580. doi: 10.1038/nmeth.4286. Epub 2017 May 8.
9
A CRISPR Approach to Neurodegenerative Diseases.
Trends Mol Med. 2017 Jun;23(6):483-485. doi: 10.1016/j.molmed.2017.04.003. Epub 2017 May 4.
10
Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia.
Blood. 2017 Jun 1;129(22):3000-3008. doi: 10.1182/blood-2017-02-766204. Epub 2017 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验