Suppr超能文献

全基因组规模的CRISPR介导的基因抑制与激活控制

Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.

作者信息

Gilbert Luke A, Horlbeck Max A, Adamson Britt, Villalta Jacqueline E, Chen Yuwen, Whitehead Evan H, Guimaraes Carla, Panning Barbara, Ploegh Hidde L, Bassik Michael C, Qi Lei S, Kampmann Martin, Weissman Jonathan S

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.

Abstract

While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways.

摘要

尽管哺乳动物转录本及其在不同细胞类型和疾病状态下的表达水平目录正在迅速扩展,但我们对转录本功能的理解仍滞后。我们提出了一种强大的技术,能够系统地研究抑制或诱导单个转录本的细胞后果。我们确定了通过核酸酶缺陷型Cas9对内源基因进行转录抑制因子(CRISPRi)和激活因子(CRISPRa)特异性靶向的规则,通常能实现90%-99%的敲低,脱靶效应最小。它们共同作用可在约1000倍的范围内调节基因表达。利用这些规则,我们构建了全基因组规模的CRISPRi和CRISPRa文库,每个文库都通过两次混合筛选进行了验证。基于生长的筛选确定了必需基因、肿瘤抑制因子和分化调节因子。对霍乱-白喉毒素敏感性的筛选为病原体进入、逆向转运和毒性机制提供了广泛的见解。我们的结果确立了CRISPRi和CRISPRa作为强大工具,为绘制复杂通路提供丰富且互补的信息。

相似文献

1
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
2
Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
Genes (Basel). 2023 Apr 13;14(4):906. doi: 10.3390/genes14040906.
3
Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities.
Nat Commun. 2018 Dec 21;9(1):5416. doi: 10.1038/s41467-018-07901-8.
4
CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
Mol Ther. 2023 Jul 5;31(7):1920-1937. doi: 10.1016/j.ymthe.2023.03.024. Epub 2023 Mar 24.
5
CRISPR Technology for Genome Activation and Repression in Mammalian Cells.
Cold Spring Harb Protoc. 2016 Jan 4;2016(1):pdb.prot090175. doi: 10.1101/pdb.prot090175.
6
CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine.
ACS Chem Biol. 2018 Feb 16;13(2):406-416. doi: 10.1021/acschembio.7b00657. Epub 2017 Oct 24.
7
A CRISPR Interference Platform for Efficient Genetic Repression in .
mSphere. 2019 Feb 13;4(1):e00002-19. doi: 10.1128/mSphere.00002-19.
8
Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi.
Genome Res. 2021 Nov;31(11):2120-2130. doi: 10.1101/gr.275607.121. Epub 2021 Aug 18.
9
A Universal, Genomewide GuideFinder for CRISPR/Cas9 Targeting in Microbial Genomes.
mSphere. 2020 Feb 12;5(1):e00086-20. doi: 10.1128/mSphere.00086-20.

引用本文的文献

1
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
2
AAV-dCas9 vector unsilences paternal Ube3a in neurons by impeding Ube3a-ATS transcription.
Commun Biol. 2025 Sep 2;8(1):1332. doi: 10.1038/s42003-025-08794-2.
4
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
5
Cytotoxicity of activator expression in CRISPR-based transcriptional activation systems.
Nat Commun. 2025 Aug 29;16(1):8071. doi: 10.1038/s41467-025-63570-4.
6
Therapeutic pCRISPRi Delivery to Lung Squamous Cell Carcinoma by Combining Nanobubbles and Ultrasound.
Pharmaceutics. 2025 Aug 13;17(8):1053. doi: 10.3390/pharmaceutics17081053.
9
Matrix regulation: a plug-and-tune method for combinatorial regulation in Saccharomyces cerevisiae.
Nat Commun. 2025 Aug 15;16(1):7624. doi: 10.1038/s41467-025-62886-5.

本文引用的文献

1
A protein-tagging system for signal amplification in gene expression and fluorescence imaging.
Cell. 2014 Oct 23;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub 2014 Oct 9.
2
Considerations when investigating lncRNA function in vivo.
Elife. 2014 Aug 14;3:e03058. doi: 10.7554/eLife.03058.
3
Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps.
Nat Protoc. 2014 Aug;9(8):1825-47. doi: 10.1038/nprot.2014.103. Epub 2014 Jul 3.
4
Genome-wide identification of CRISPR/Cas9 off-targets in human genome.
Cell Res. 2014 Aug;24(8):1009-12. doi: 10.1038/cr.2014.87. Epub 2014 Jul 1.
5
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.
6
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.
Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.
7
The noncoding RNA revolution-trashing old rules to forge new ones.
Cell. 2014 Mar 27;157(1):77-94. doi: 10.1016/j.cell.2014.03.008.
8
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
9
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
Nat Biotechnol. 2014 Mar;32(3):267-73. doi: 10.1038/nbt.2800. Epub 2013 Dec 23.
10
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验