Suppr超能文献

运用机器学习预测慢波和快波神经元动力学。

Predicting slow and fast neuronal dynamics with machine learning.

机构信息

School of Information Technology, Illinois State University, Normal, Illinois 61790, USA.

Department of Physics, Illinois State University, Normal, Illinois 61790, USA.

出版信息

Chaos. 2019 Nov;29(11):113119. doi: 10.1063/1.5119723.

Abstract

In this work, we employ reservoir computing, a recently developed machine learning technique, to predict the time evolution of neuronal activity produced by the Hindmarsh-Rose neuronal model. Our results show accurate short- and long-term predictions for periodic (tonic and bursting) neuronal behaviors, but only short-term accurate predictions for chaotic neuronal states. However, after the accuracy of the short-term predictability deteriorates in the chaotic regime, the predicted output continues to display similarities with the actual neuronal behavior. This is reinforced by a striking resemblance between the bifurcation diagrams of the actual and of the predicted outputs. Error analyses of the reservoir's performance are consistent with standard results previously obtained.

摘要

在这项工作中,我们采用了 reservoir computing,这是一种最近发展起来的机器学习技术,来预测 Hindmarsh-Rose 神经元模型产生的神经元活动的时间演化。我们的结果表明,对于周期性(紧张和爆发)神经元行为,可以进行准确的短期和长期预测,但对于混沌神经元状态,只能进行短期准确预测。然而,在混沌状态下短期可预测性的准确性下降后,预测输出仍然显示出与实际神经元行为的相似性。这一点得到了实际和预测输出的分岔图之间惊人相似性的支持。对储层性能的误差分析与之前获得的标准结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验