Suppr超能文献

带有单水平数据的两级调节潜变量模型。

A Two-level Moderated Latent Variable Model with Single Level Data.

机构信息

Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University.

Department of Psychology, University of Notre Dame.

出版信息

Multivariate Behav Res. 2020 Nov-Dec;55(6):873-893. doi: 10.1080/00273171.2019.1689350. Epub 2019 Nov 29.

Abstract

With single-level data, Yuan, Cheng and Maxwell developed a two-level regression model for more accurate moderation analysis. This article extends the two-level regression model to a two-level moderated latent variable (2MLV) model, and uses a Bayesian approach to estimate and test the moderation effects. Monte Carlo results indicate that: 1) the new method yields more accurate estimate of the interaction effect than those via the product-indicator (PI) approach and latent variable interaction (LVI) with single-level model, both are also estimated via Bayesian method; 2) the coverage rates of the credibility interval following the 2MLV model are closer to the nominal 95% than those following the other methods; 3) the test for the existence of the moderation effect is more reliable in controlling Type I errors than both PI and LVI, especially under heteroscedasticity conditions. Moreover, a more interpretable measure of effect size is developed based on the 2MLV model, which directly answers the question as to what extent a moderator can account for the change of the coefficient between the predictor and the outcome variable. A real data example illustrates the application of the new method.

摘要

袁、程和麦克斯韦尔使用单水平数据开发了一个两级回归模型,以进行更精确的调节分析。本文将两级回归模型扩展到两级调节潜变量(2MLV)模型,并使用贝叶斯方法来估计和检验调节效应。蒙特卡罗结果表明:1)新方法比通过产品指标(PI)方法和单水平模型的潜变量交互(LVI)的贝叶斯方法得到的交互效应的估计更准确;2)2MLV 模型下的置信区间的覆盖率更接近名义的 95%,而其他方法则不然;3)与 PI 和 LVI 相比,该方法在控制 I 型错误方面对调节效应的存在检验更可靠,尤其是在异方差条件下。此外,基于 2MLV 模型开发了一种更具可解释性的效应量度量,它直接回答了调节因素在多大程度上可以解释预测变量和结果变量之间的系数变化。实际数据示例说明了新方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验