Yuan Ke-Hai, Cheng Ying, Maxwell Scott
Department of Psychology, University of Notre Dame, Notre Dame, IN, 46556, USA,
Psychometrika. 2014 Oct;79(4):701-32. doi: 10.1007/s11336-013-9357-x. Epub 2013 Dec 12.
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
调节分析在社会和行为研究中被广泛应用。调节分析最常用的模型是调节多重回归(MMR),其中回归模型的解释变量包括乘积项,并且该模型通常通过最小二乘法(LS)进行估计。本文主张采用二级回归模型,在该模型中,一个准则变量对预测变量的回归系数进一步对调节变量进行回归。开发了一种基于正态分布的最大似然法(NML)来估计二级模型参数的算法。提供并研究了参数估计的标准误差(SEs)公式。结果表明,当存在异方差时,二级模型的NML比MMR模型的LS分析能给出更有效、更准确的参数估计。当误差方差为同方差时,二级模型的NML与MMR模型的LS得出的结果基本相同。最重要的是,二级回归模型允许估计每个回归系数中由调节变量引起的方差百分比。将二级模型的NML应用于1991年综合社会调查的数据时,发现种族对工作声望回归受教育年限有显著的调节效应,而MMR模型的LS则未发现此效应。还开发并记录了一个R包,以方便二级模型的应用。