Suppr超能文献

潜在中介模型中测量和结构不变性的检验——IPCR与贝叶斯MNLFA的比较

Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.

作者信息

Muench Fabian Felix, Koch Tobias

机构信息

Department of Psychology, Psychological Methods Division, Friedrich-Schiller-Universität Jena, Am Steiger 1, Haus 3, 07743, Jena, Germany.

出版信息

Behav Res Methods. 2025 Aug 8;57(9):250. doi: 10.3758/s13428-025-02781-5.

Abstract

Moderated mediation models are frequently used in psychological research to examine direct, indirect, and total effects across an external moderating variable. When these models involve latent variables, measurement invariance should be tested first to ensure that measures function equivalently across subpopulations. If measurement invariance is violated, conclusions drawn about the moderation effects can be biased. However, measurement invariance is seldom tested across the moderator variable itself, especially if it is continuous. In this paper, we present two approaches that allow testing measurement and structural invariance simultaneously and across continuous covariates. They are termed individual parameter contribution regression (IPCR; Arnold et al., Structural Equation Modeling: A Multidisciplinary Journal, 27, 613-628, 2019) and moderated nonlinear latent factor analysis (MNLFA; Bauer & Hussong, Psychological Methods, 14(2), 101-125, 2009). We showcase both approaches with empirical data of couples in the German Family Panel (Brüderl et al., 2022). We show how MNLFA can be estimated in a Bayesian framework and explain Bayesian model selection with posterior predictive model checks and leave-one-out cross-validation (Vehtari et al., Statistics and Computing, 27(5), 1413-1432, 2017). Afterwards, we present the results of a simulation study comparing IPCR and Bayesian MNLFA with regard to parameter bias. We close with a comparison of both approaches regarding the empirical analysis and the simulation study and provide recommendations for applied researchers working with latent moderated mediation models.

摘要

调节中介模型在心理学研究中经常被用于检验外部调节变量的直接、间接和总效应。当这些模型涉及潜在变量时,应首先检验测量不变性,以确保测量在不同亚群体中具有等效功能。如果违反了测量不变性,关于调节效应得出的结论可能会有偏差。然而,很少会在调节变量本身进行测量不变性检验,特别是当它是连续变量时。在本文中,我们提出了两种方法,允许同时在连续协变量上检验测量不变性和结构不变性。它们被称为个体参数贡献回归(IPCR;阿诺德等人,《结构方程建模:多学科杂志》,第27卷,第613 - 628页,2019年)和调节非线性潜在因子分析(MNLFA;鲍尔和胡松,《心理方法》,第14卷第2期,第101 - 125页,2009年)。我们用德国家庭面板中夫妻的实证数据展示了这两种方法(布鲁德尔等人,2022年)。我们展示了如何在贝叶斯框架中估计MNLFA,并通过后验预测模型检验和留一法交叉验证(韦塔里等人,《统计与计算》,第27卷第5期,第1413 - 1432页,2017年)解释贝叶斯模型选择。之后,我们给出了一项模拟研究的结果,比较了IPCR和贝叶斯MNLFA在参数偏差方面的情况。我们以对这两种方法在实证分析和模拟研究方面的比较作为结尾,并为使用潜在调节中介模型的应用研究人员提供建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c8c/12334378/c6f04067af1c/13428_2025_2781_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验