College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China. Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China.
Nanotechnology. 2020 Apr 3;31(14):145503. doi: 10.1088/1361-6528/ab5d6b. Epub 2019 Nov 29.
Hydrogen sulfide (HS) is a toxic and flammable chemical, even in low concentration. In this study, an in situ electrospinning strategy was developed to directly deposit the sensitive materials of nickel oxide (NiO)-doped SnO nanofiber on alumina substrates, resulting in the fast HS detection. The electrospun fiber could be deposited on to the alumina tube directly, and remain there during calcination. Using this method, the NiO-doped SnO nanofibers fabricated and manifested a fast response, fast recovery, and high selectivity at a low temperature (150 °C). A 15% atom NiO-doped SnO nanofiber-containing HS detector presented a high response (1352), low response time (23 s), and low recovery time (38 s) while detecting a concentration of 50 ppm HS at 150 °C. Compared to conventional methods, the HS detector based on the in situ electrospinning method showed a higher sensitivity, faster response, and faster recovery. Furthermore, the superior performance of the detector can be ascribed to the thinner film and non-interrupted fiber structure. Additionally, the transformation of NiO to NiS, confirmed by the x-ray photoelectron spectroscopy under a HS atmosphere, suggested the main reason for the detector's high performance. The high performance of the NiO-doped SnO suggests a strategy for gas detectors, biodetectors, and semiconductor devices.
硫化氢(HS)是一种有毒且易燃的化学物质,即使在低浓度下也是如此。在这项研究中,开发了一种原位静电纺丝策略,将掺镍氧化锡(NiO)的 SnO 纳米纤维敏感材料直接沉积在氧化铝基板上,从而实现了对 HS 的快速检测。电纺纤维可以直接沉积在氧化铝管上,并在煅烧过程中保留在那里。使用这种方法,制备的 NiO 掺杂 SnO 纳米纤维表现出快速响应、快速恢复和在低温(150°C)下的高选择性。在 150°C 下检测 50 ppm HS 时,含 15%原子 NiO 的 SnO 纳米纤维的 HS 探测器呈现出高响应(1352)、低响应时间(23 s)和低恢复时间(38 s)。与传统方法相比,基于原位静电纺丝方法的 HS 探测器具有更高的灵敏度、更快的响应速度和更快的恢复速度。此外,探测器的优异性能可归因于更薄的薄膜和非中断的纤维结构。此外,在 HS 气氛下的 X 射线光电子能谱证实了 NiO 向 NiS 的转化,这表明了探测器高性能的主要原因。NiO 掺杂 SnO 的高性能为气体探测器、生物探测器和半导体器件提供了一种策略。