Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, 790-1 Otsuka, Motooka, Tomioka, Fukushima 979-1195, Japan; Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
J Hazard Mater. 2020 Apr 5;387:121677. doi: 10.1016/j.jhazmat.2019.121677. Epub 2019 Nov 15.
The effective and efficient removal of radioactive Cs from contaminated soil is highly urgent for the nuclear post-accident remediation. In present study, we achieved rapid Cs desorption from both a typical micaceous clay (i.e., vermiculitized biotite, VB) and actually contaminated soil by high-speed ion exchange through temperature-controlled continuous leaching with Mg-solutions in a column reactor. Cs-sorbed VB was firstly employed as a soil surrogate to explore the macro-Cs desorption process and micro-mechanism in detail. Results showed that VB sandwiched the adsorbed Cs to its interlayers within collapsed structure (10.7 Å) and prevent Cs release even by abundant extraction with HO at 250 °C or Mg at 25 °C. However, Mg-extracted Cs desorption boosted significantly with elevating temperatures and 100 % of sorbed-Cs was removed from Cs-VB leached above 150 °C. Further structural and composition analysis of the leached specimen ensured that solvated Mg preferentially entered into Cs-collapsed interlayers at 150 °C than K-interlayers above 200 °C, leading to prior complete Cs removal over K from VB at lower temperatures. By contrast, the Cs-contaminated soil reduced by ∼39 % but ∼82 % of its initial radioactivity after equally leaching with same volumes of Mg-solution at 150 and 200 °C, respectively. These temperature-controlled Cs desorption validated that radioactive Cs in actual soil indeed be tightly trapped by micaceous clays nearly in the Cs-K co-collapsed interlayers, to which its extraction by other cations can conditionally occur above enough high leaching temperatures. These superior features would inspire new insights for the design of novel practical technologies for treatment and decontamination of the nuclear post-accident soils.
从受污染的土壤中有效和高效地去除放射性 Cs 对于核事故后的修复是非常紧迫的。在本研究中,我们通过在柱式反应器中使用控温连续浸出法,用 Mg 溶液对典型的云母粘土(即蛭石化黑云母,VB)和实际受污染的土壤进行高速离子交换,从而实现了 Cs 的快速解吸。首先,将 Cs 吸附的 VB 用作土壤替代物,以详细研究宏观 Cs 的解吸过程和微观机制。结果表明,VB 将吸附的 Cs 夹在其坍塌结构(10.7 Å)的层间,即使在 250°C 用 HO 或 25°C 用 Mg 进行大量提取,也阻止 Cs 释放。然而,随着温度的升高,Mg 提取的 Cs 解吸显著增强,在 150°C 以上浸出时,吸附的 Cs 中有 100%被去除。对浸出样品的进一步结构和成分分析确保了溶剂化的 Mg 优先在 150°C 进入 Cs 坍塌的层间,而不是在 200°C 以上进入 K 层间,这导致 VB 中 K 之前在较低温度下优先于 Cs 被完全去除。相比之下,同样用相同体积的 Mg 溶液在 150 和 200°C 浸出后,受污染的土壤分别减少了约 39%和 82%的初始放射性。这些控温 Cs 解吸实验验证了实际土壤中的放射性 Cs 确实被云母粘土紧密捕获,几乎在 Cs-K 共坍塌的层间,对其进行提取需要在足够高的浸出温度下通过其他阳离子的条件作用才能实现。这些卓越的特性将为核事故后土壤处理和去污的新型实用技术的设计提供新的思路。